|
import torch |
|
import re |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel |
|
import os |
|
import tensorflow as tf |
|
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' |
|
|
|
device='cpu' |
|
|
|
model_id = "nttdataspain/vit-gpt2-stablediffusion2-lora" |
|
model = VisionEncoderDecoderModel.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(model_id) |
|
|
|
|
|
def predict(image): |
|
img = image.convert('RGB') |
|
model.eval() |
|
pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values |
|
with torch.no_grad(): |
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds[0] |
|
|
|
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) |
|
output = gr.outputs.Textbox(type="text",label="Captions") |
|
examples_folder = os.path.join(os.path.dirname(__file__), "examples") |
|
examples = [os.path.join(examples_folder, file) for file in os.listdir(examples_folder)] |
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 1200px; margin: 20px auto;"> |
|
<h2 style="font-weight: 900; font-size: 3rem; margin: 0rem"> |
|
📸 ViT Image-to-Text with LORA 📝 |
|
</h2> |
|
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 2rem; margin-bottom: 1.5rem"> |
|
In the field of large language models, the challenge of fine-tuning has long perplexed researchers. Microsoft, however, has unveiled an innovative solution called <b>Low-Rank Adaptation (LoRA)</b>. With the emergence of behemoth models like GPT-3 boasting billions of parameters, the cost of fine-tuning them for specific tasks or domains has become exorbitant. |
|
<br> |
|
<br> |
|
You can find more info here: <u><a href="https://medium.com/@daniel.puenteviejo/fine-tuning-image-to-text-algorithms-with-lora-deb22aa7da27" target="_blank">Medium article</a></u> |
|
</h2> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
img = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) |
|
button = gr.Button(value="Describe") |
|
with gr.Column(scale=1): |
|
out = gr.outputs.Textbox(type="text",label="Captions") |
|
|
|
button.click(predict, inputs=[img], outputs=[out]) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=img, |
|
outputs=out, |
|
fn=predict, |
|
cache_examples=True, |
|
) |
|
demo.launch(debug=True) |