Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ zero = torch.Tensor([0]).cuda()
|
|
10 |
print(zero.device)
|
11 |
|
12 |
device = 0 if torch.cuda.is_available() else -1
|
13 |
-
|
14 |
# Load LLM model for classification
|
15 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli",device=device)
|
16 |
|
@@ -34,7 +34,7 @@ sub_request_types = {
|
|
34 |
}
|
35 |
|
36 |
# Function to extract text from PDFs
|
37 |
-
|
38 |
def extract_text_from_pdf(pdf_path):
|
39 |
with pdfplumber.open(pdf_path) as pdf:
|
40 |
text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
@@ -56,7 +56,7 @@ def classify_text(text):
|
|
56 |
return f"Request Type: {main_category}\nSub Request Type: {sub_category}\nConfidence Score: {confidence:.2f}"
|
57 |
|
58 |
# Gradio UI
|
59 |
-
|
60 |
def process_pdf(file):
|
61 |
text = extract_text_from_pdf(file.name)
|
62 |
return classify_text(text)
|
|
|
10 |
print(zero.device)
|
11 |
|
12 |
device = 0 if torch.cuda.is_available() else -1
|
13 |
+
|
14 |
# Load LLM model for classification
|
15 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli",device=device)
|
16 |
|
|
|
34 |
}
|
35 |
|
36 |
# Function to extract text from PDFs
|
37 |
+
|
38 |
def extract_text_from_pdf(pdf_path):
|
39 |
with pdfplumber.open(pdf_path) as pdf:
|
40 |
text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
|
|
56 |
return f"Request Type: {main_category}\nSub Request Type: {sub_category}\nConfidence Score: {confidence:.2f}"
|
57 |
|
58 |
# Gradio UI
|
59 |
+
|
60 |
def process_pdf(file):
|
61 |
text = extract_text_from_pdf(file.name)
|
62 |
return classify_text(text)
|