Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import numpy as np
|
| 7 |
+
import faiss
|
| 8 |
+
|
| 9 |
+
app = FastAPI(title="Closed-Domain Q&A Chatbot")
|
| 10 |
+
|
| 11 |
+
app.add_middleware(
|
| 12 |
+
CORSMiddleware,
|
| 13 |
+
allow_origins=["*"],
|
| 14 |
+
allow_methods=["*"],
|
| 15 |
+
allow_headers=["*"],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Data store
|
| 19 |
+
questions = []
|
| 20 |
+
answers = []
|
| 21 |
+
index = None
|
| 22 |
+
model = None
|
| 23 |
+
|
| 24 |
+
class Question(BaseModel):
|
| 25 |
+
query: str
|
| 26 |
+
|
| 27 |
+
@app.post("/load")
|
| 28 |
+
async def load_qa(file: UploadFile = File(...)):
|
| 29 |
+
global questions, answers, index, model
|
| 30 |
+
|
| 31 |
+
if file.filename.endswith(".csv"):
|
| 32 |
+
df = pd.read_csv(file.file)
|
| 33 |
+
elif file.filename.endswith((".xls", ".xlsx")):
|
| 34 |
+
df = pd.read_excel(file.file)
|
| 35 |
+
else:
|
| 36 |
+
return {"error": "Unsupported file format."}
|
| 37 |
+
|
| 38 |
+
if "Question" not in df.columns or "Answer" not in df.columns:
|
| 39 |
+
return {"error": "Columns 'Question' and 'Answer' required."}
|
| 40 |
+
|
| 41 |
+
questions = df["Question"].tolist()
|
| 42 |
+
answers = df["Answer"].tolist()
|
| 43 |
+
|
| 44 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 45 |
+
question_embeddings = model.encode(questions)
|
| 46 |
+
|
| 47 |
+
index = faiss.IndexFlatL2(question_embeddings.shape[1])
|
| 48 |
+
index.add(np.array(question_embeddings).astype('float32'))
|
| 49 |
+
|
| 50 |
+
return {"status": "Knowledge base loaded", "total_questions": len(questions)}
|
| 51 |
+
|
| 52 |
+
@app.post("/clear")
|
| 53 |
+
async def clear_data():
|
| 54 |
+
global questions, answers, index, model
|
| 55 |
+
questions, answers, index, model = [], [], None, None
|
| 56 |
+
return {"status": "Knowledge base cleared"}
|
| 57 |
+
|
| 58 |
+
@app.post("/ask")
|
| 59 |
+
async def ask_question(question: Question):
|
| 60 |
+
if not index:
|
| 61 |
+
return {"answer": "Knowledge base not loaded"}
|
| 62 |
+
|
| 63 |
+
query_embedding = model.encode([question.query]).astype('float32')
|
| 64 |
+
D, I = index.search(query_embedding, k=1)
|
| 65 |
+
|
| 66 |
+
if D[0][0] < 50: # Distance threshold
|
| 67 |
+
matched_answer = answers[I[0][0]]
|
| 68 |
+
return {"answer": matched_answer}
|
| 69 |
+
else:
|
| 70 |
+
return {"answer": "I don’t have an answer for that."}
|
| 71 |
+
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|