Alexvatti's picture
Update main.py
90c1f02 verified
raw
history blame
4.89 kB
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from pathlib import Path
import pytesseract
from PIL import Image
import PyPDF2
import docx
import shutil
import os
import io
from transformers import pipeline, CLIPProcessor, CLIPModel
from datetime import datetime
import uvicorn
# Hugging Face GPT or LLM model for content-based name generation
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage
app = FastAPI()
# Set up upload folder and allowed extensions
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'pdf', 'docx', 'txt'}
MAX_CONTENT_LENGTH = 16 * 1024 * 1024 # 16 MB
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
# Load your OpenAI API key from environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
# Ensure the API key is correctly loaded
if openai_api_key is None:
raise ValueError("API key not found. Please set your OPENAI_API_KEY environment variable.")
# Initialize the LLM (Language Model) with GPT-4o-mini or other available model
llm = ChatOpenAI(
model_name="gpt-4o-mini", # Specify the correct model name (e.g., "gpt-4" or "gpt-4o-mini")
temperature=0, # Set temperature to 0 for deterministic responses (no randomness)
openai_api_key=openai_api_key # Pass the OpenAI API key
)
# Load the CLIP model for image feature extraction
# Function to generate a more appropriate name based on content
def generate_name_based_on_content(text,industry):
prompt = f"Generate a meaningful file name for the following content: {text[:200]} based {industry}" # Truncate text to first 200 characters
response = llm(prompt) # Get the model's response
# Extract the generated file name and clean it
file_name = response.strip() # Strip any unnecessary whitespace or characters
return file_name
# Allowed file extensions check
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# Function to extract text from PDF
def extract_text_from_pdf(pdf_path):
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text()
return text
# Function to extract text from DOCX
def extract_text_from_docx(docx_path):
doc = docx.Document(docx_path)
text = ""
for para in doc.paragraphs:
text += para.text
return text
# Function to extract text from images
def extract_text_from_image(image_path):
image = Image.open(image_path)
return pytesseract.image_to_string(image)
# Function to extract image features
def extract_features_from_image(image_path):
image = Image.open(image_path)
inputs = clip_processor(images=image, return_tensors="pt")
outputs = clip_model.get_image_features(**inputs)
return outputs
# Function to process files
def process_files(files, industry):
directories = []
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
for file in files:
if file and allowed_file(file.filename):
filename = file.filename
file_path = os.path.join(UPLOAD_FOLDER, filename)
with open(file_path, "wb") as buffer:
buffer.write(file.file.read())
text = ""
if filename.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
elif filename.endswith('.docx'):
text = extract_text_from_docx(file_path)
elif filename.endswith(('png', 'jpg', 'jpeg')):
text = extract_text_from_image(file_path)
# Generate name based on LLM and include timestamp for uniqueness
content_name = generate_name_based_on_content(text,industry) if text else 'Untitled'
directory_name = f"{industry}_{content_name}_{timestamp}"
new_dir = os.path.join(UPLOAD_FOLDER, directory_name)
if not os.path.exists(new_dir):
os.makedirs(new_dir)
# Rename and move the file to the new directory
new_file_path = os.path.join(new_dir, f"{directory_name}_{filename}")
shutil.move(file_path, new_file_path)
directories.append(directory_name)
return directories
@app.post("/upload")
async def upload_files(industry: str = Form(...), files: list[UploadFile] = File(...)):
if not industry:
return JSONResponse(content={"message": "Industry is required."}, status_code=400)
if not files:
return JSONResponse(content={"message": "No files selected."}, status_code=400)
directories = process_files(files, industry)
return JSONResponse(content={"message": "Files successfully uploaded and organized.", "directories": directories})
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)