File size: 4,995 Bytes
818b129
 
 
 
 
 
 
 
 
 
 
 
 
e45272d
 
 
818b129
 
 
 
 
 
 
 
 
 
 
e45272d
 
 
 
 
 
 
 
 
 
 
 
 
818b129
 
 
 
 
 
 
e45272d
 
 
 
 
 
818b129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from pathlib import Path
import pytesseract
from PIL import Image
import PyPDF2
import docx
import shutil
import os
import io
from transformers import pipeline, CLIPProcessor, CLIPModel
from datetime import datetime
import uvicorn
# Hugging Face GPT or LLM model for content-based name generation
from langchain.chat_models import ChatOpenAI
import os

app = FastAPI()

# Set up upload folder and allowed extensions
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'pdf', 'docx', 'png', 'jpg', 'jpeg'}
MAX_CONTENT_LENGTH = 16 * 1024 * 1024  # 16 MB

if not os.path.exists(UPLOAD_FOLDER):
    os.makedirs(UPLOAD_FOLDER)

# Load your OpenAI API key from environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")

# Ensure the API key is correctly loaded
if openai_api_key is None:
    raise ValueError("API key not found. Please set your OPENAI_API_KEY environment variable.")

# Initialize the LLM (Language Model) with GPT-4o-mini or other available model
llm = ChatOpenAI(
    model_name="gpt-4o-mini",  # Specify the correct model name (e.g., "gpt-4" or "gpt-4o-mini")
    temperature=0,  # Set temperature to 0 for deterministic responses (no randomness)
    openai_api_key=openai_api_key  # Pass the OpenAI API key
)

# Load the CLIP model for image feature extraction
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Function to generate a more appropriate name based on content
def generate_name_based_on_content(text):
    prompt = f"Generate a meaningful file name for the following content: {text[:200]}"  # Truncate text to first 200 characters
    response = llm(prompt)  # Get the model's response

    # Extract the generated file name and clean it
    file_name = response.strip()  # Strip any unnecessary whitespace or characters
    return file_name

    
# Allowed file extensions check
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# Function to extract text from PDF
def extract_text_from_pdf(pdf_path):
    text = ""
    with open(pdf_path, 'rb') as file:
        reader = PyPDF2.PdfReader(file)
        for page in reader.pages:
            text += page.extract_text()
    return text

# Function to extract text from DOCX
def extract_text_from_docx(docx_path):
    doc = docx.Document(docx_path)
    text = ""
    for para in doc.paragraphs:
        text += para.text
    return text

# Function to extract text from images
def extract_text_from_image(image_path):
    image = Image.open(image_path)
    return pytesseract.image_to_string(image)

# Function to extract image features
def extract_features_from_image(image_path):
    image = Image.open(image_path)
    inputs = clip_processor(images=image, return_tensors="pt")
    outputs = clip_model.get_image_features(**inputs)
    return outputs

# Function to process files
def process_files(files, industry):
    directories = []
    timestamp = datetime.now().strftime("%Y%m%d%H%M%S")

    for file in files:
        if file and allowed_file(file.filename):
            filename = file.filename
            file_path = os.path.join(UPLOAD_FOLDER, filename)
            with open(file_path, "wb") as buffer:
                buffer.write(file.file.read())

            text = ""
            if filename.endswith('.pdf'):
                text = extract_text_from_pdf(file_path)
            elif filename.endswith('.docx'):
                text = extract_text_from_docx(file_path)
            elif filename.endswith(('png', 'jpg', 'jpeg')):
                text = extract_text_from_image(file_path)

            # Generate name based on LLM and include timestamp for uniqueness
            content_name = generate_name_based_on_content(text) if text else 'Untitled'
            directory_name = f"{industry}_{content_name}_{timestamp}"
            new_dir = os.path.join(UPLOAD_FOLDER, directory_name)
            if not os.path.exists(new_dir):
                os.makedirs(new_dir)

            # Rename and move the file to the new directory
            new_file_path = os.path.join(new_dir, f"{directory_name}_{filename}")
            shutil.move(file_path, new_file_path)

            directories.append(directory_name)

    return directories

@app.post("/upload")
async def upload_files(industry: str = Form(...), files: list[UploadFile] = File(...)):
    if not industry:
        return JSONResponse(content={"message": "Industry is required."}, status_code=400)

    if not files:
        return JSONResponse(content={"message": "No files selected."}, status_code=400)

    directories = process_files(files, industry)
    return JSONResponse(content={"message": "Files successfully uploaded and organized.", "directories": directories})

if __name__ == "__main__":
    uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)