Spaces:
Build error
Build error
Update Lowlight.py
Browse files- Lowlight.py +37 -36
Lowlight.py
CHANGED
@@ -1,46 +1,47 @@
|
|
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
2 |
import torchvision
|
3 |
-
import onnxruntime
|
4 |
-
import onnx
|
5 |
import cv2
|
|
|
|
|
6 |
import argparse
|
7 |
-
import
|
8 |
-
import numpy as np
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
import os
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument('--test_path', type=str, default='/home/arye-stark/zwb/Illumination-Adaptive-Transformer/IAT_enhance/demo_imgs/low_demo.jpg')
|
14 |
-
parser.add_argument('--pk_path', type=str, default='model_zoo/Low.onnx')
|
15 |
-
parser.add_argument('--save_path', type=str, default='Results/')
|
16 |
-
config = parser.parse_args()
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
providers = ['CPUExecutionProvider']
|
28 |
-
model_name = 'IAT'
|
29 |
|
30 |
-
|
31 |
-
try:
|
32 |
-
onnx_session = onnxruntime.InferenceSession(config.pk_path, providers=providers)
|
33 |
-
onnx_input = {'input': input_image}
|
34 |
-
#onnx_output0, onnx_output1, onnx_output2 = onnx_session.run(['output0', 'output1', 'output2'], onnx_input)
|
35 |
-
onnx_output = onnx_session.run(['output'], onnx_input)
|
36 |
-
torchvision.utils.save_image(torch.from_numpy(onnx_output[0]), config.save_path+'output.png')
|
37 |
-
#torch_output = np.squeeze(onnx_output[0], 0)
|
38 |
-
#torch_output = np.transpose(torch_output * 255, [1, 2, 0]).astype(np.uint8)
|
39 |
-
#plt.imsave(config.save_path+'output.png', torch_output)
|
40 |
-
except Exception as e:
|
41 |
-
print(f'Input on model:{model_name} failed')
|
42 |
-
print(e)
|
43 |
-
else:
|
44 |
-
print(f'Input on model:{model_name} succeed')
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import time
|
7 |
import torchvision
|
|
|
|
|
8 |
import cv2
|
9 |
+
import torchvision.utils as tvu
|
10 |
+
import torch.functional as F
|
11 |
import argparse
|
12 |
+
from model.IAT_main import IAT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def inference_img(img_path,Net):
|
15 |
+
|
16 |
+
low_image = Image.open(img_path).convert('RGB')
|
17 |
+
enhance_transforms = transforms.Compose([
|
18 |
+
transforms.Resize((256,256)),
|
19 |
+
transforms.ToTensor()
|
20 |
+
])
|
21 |
|
22 |
+
with torch.no_grad():
|
23 |
+
low_image = enhance_transforms(low_image)
|
24 |
+
low_image = low_image.unsqueeze(0)
|
25 |
+
start = time.time()
|
26 |
+
restored2 = Net(low_image)
|
27 |
+
end = time.time()
|
28 |
|
|
|
|
|
29 |
|
30 |
+
return restored2,end-start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
if __name__ == '__main__':
|
33 |
+
parser=argparse.ArgumentParser()
|
34 |
+
parser.add_argument('--test_path',type=str,required=True,help='Path to test')
|
35 |
+
parser.add_argument('--save_path',type=str,required=True,help='Path to save')
|
36 |
+
parser.add_argument('--pk_path',type=str,default='model_zoo/underwater.pth',help='Path of the checkpoint')
|
37 |
+
opt = parser.parse_args()
|
38 |
+
if not os.path.isdir(opt.save_path):
|
39 |
+
os.mkdir(opt.save_path)
|
40 |
+
Net = IAT()
|
41 |
+
Net.load_state_dict(torch.load(opt.pk_path, map_location=torch.device('cpu')))
|
42 |
+
Net = Net.eval()
|
43 |
+
image = opt.test_path
|
44 |
+
print(image)
|
45 |
+
restored2,time_num = inference_img(image,Net)
|
46 |
+
torchvision.utils.save_image(restored2,opt.save_path+'output.png')
|
47 |
|