Spaces:
Build error
Build error
import os | |
import torch | |
import numpy as np | |
from torchvision import transforms | |
from PIL import Image | |
import time | |
import torchvision | |
import cv2 | |
import torchvision.utils as tvu | |
import torch.functional as F | |
import argparse | |
def inference_img(haze_path,Net): | |
haze_image = Image.open(haze_path).convert('RGB') | |
enhance_transforms = transforms.Compose([ | |
transforms.Resize((400,400)), | |
transforms.ToTensor() | |
]) | |
print(haze_image.size) | |
with torch.no_grad(): | |
haze_image = enhance_transforms(haze_image) | |
#print(haze_image) | |
haze_image = haze_image.unsqueeze(0) | |
start = time.time() | |
restored2 = Net(haze_image) | |
end = time.time() | |
return restored2,end-start | |
if __name__ == '__main__': | |
parser=argparse.ArgumentParser() | |
parser.add_argument('--test_path',type=str,required=True,help='Path to test') | |
parser.add_argument('--save_path',type=str,required=True,help='Path to save') | |
parser.add_argument('--pk_path',type=str,default='model_zoo/Haze4k.tjm',help='Path of the checkpoint') | |
opt = parser.parse_args() | |
if not os.path.isdir(opt.save_path): | |
os.mkdir(opt.save_path) | |
Net=torch.jit.load(opt.pk_path,map_location=torch.device('cpu')).eval() | |
image = opt.test_path | |
print(image) | |
restored2,time_num = inference_img(image,Net) | |
torchvision.utils.save_image(restored2,opt.save_path+'output.png') | |