Spaces:
Build error
Build error
| """ | |
| Code copy from uniformer source code: | |
| https://github.com/Sense-X/UniFormer | |
| """ | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| import math | |
| from timm.models.vision_transformer import VisionTransformer, _cfg | |
| from timm.models.registry import register_model | |
| from timm.models.layers import trunc_normal_, DropPath, to_2tuple | |
| # ResMLP's normalization | |
| class Aff(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| # learnable | |
| self.alpha = nn.Parameter(torch.ones([1, 1, dim])) | |
| self.beta = nn.Parameter(torch.zeros([1, 1, dim])) | |
| def forward(self, x): | |
| x = x * self.alpha + self.beta | |
| return x | |
| # Color Normalization | |
| class Aff_channel(nn.Module): | |
| def __init__(self, dim, channel_first = True): | |
| super().__init__() | |
| # learnable | |
| self.alpha = nn.Parameter(torch.ones([1, 1, dim])) | |
| self.beta = nn.Parameter(torch.zeros([1, 1, dim])) | |
| self.color = nn.Parameter(torch.eye(dim)) | |
| self.channel_first = channel_first | |
| def forward(self, x): | |
| if self.channel_first: | |
| x1 = torch.tensordot(x, self.color, dims=[[-1], [-1]]) | |
| x2 = x1 * self.alpha + self.beta | |
| else: | |
| x1 = x * self.alpha + self.beta | |
| x2 = torch.tensordot(x1, self.color, dims=[[-1], [-1]]) | |
| return x2 | |
| class Mlp(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class CMlp(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Conv2d(in_features, hidden_features, 1) | |
| self.act = act_layer() | |
| self.fc2 = nn.Conv2d(hidden_features, out_features, 1) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class CBlock_ln(nn.Module): | |
| def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=Aff_channel, init_values=1e-4): | |
| super().__init__() | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| #self.norm1 = Aff_channel(dim) | |
| self.norm1 = norm_layer(dim) | |
| self.conv1 = nn.Conv2d(dim, dim, 1) | |
| self.conv2 = nn.Conv2d(dim, dim, 1) | |
| self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| #self.norm2 = Aff_channel(dim) | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.gamma_1 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True) | |
| self.gamma_2 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True) | |
| self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| B, C, H, W = x.shape | |
| #print(x.shape) | |
| norm_x = x.flatten(2).transpose(1, 2) | |
| #print(norm_x.shape) | |
| norm_x = self.norm1(norm_x) | |
| norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2) | |
| x = x + self.drop_path(self.gamma_1*self.conv2(self.attn(self.conv1(norm_x)))) | |
| norm_x = x.flatten(2).transpose(1, 2) | |
| norm_x = self.norm2(norm_x) | |
| norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2) | |
| x = x + self.drop_path(self.gamma_2*self.mlp(norm_x)) | |
| return x | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (B, H, W, C) | |
| window_size (int): window size | |
| Returns: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| """ | |
| B, H, W, C = x.shape | |
| #print(x.shape) | |
| x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
| windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
| return windows | |
| def window_reverse(windows, window_size, H, W): | |
| """ | |
| Args: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| window_size (int): Window size | |
| H (int): Height of image | |
| W (int): Width of image | |
| Returns: | |
| x: (B, H, W, C) | |
| """ | |
| B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
| x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
| return x | |
| class WindowAttention(nn.Module): | |
| r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
| It supports both of shifted and non-shifted window. | |
| Args: | |
| dim (int): Number of input channels. | |
| window_size (tuple[int]): The height and width of the window. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
| attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
| proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
| """ | |
| def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size # Wh, Ww | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def forward(self, x): | |
| B_, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
| q = q * self.scale | |
| attn = (q @ k.transpose(-2, -1)) | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| ## Layer_norm, Aff_norm, Aff_channel_norm | |
| class SwinTransformerBlock(nn.Module): | |
| r""" Swin Transformer Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resulotion. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Window size. | |
| shift_size (int): Shift size for SW-MSA. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, dim, num_heads=2, window_size=8, shift_size=0, | |
| mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
| act_layer=nn.GELU, norm_layer=Aff_channel): | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| #self.norm1 = norm_layer(dim) | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttention( | |
| dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| #self.norm2 = norm_layer(dim) | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| B, C, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| shortcut = x | |
| x = self.norm1(x) | |
| x = x.view(B, H, W, C) | |
| # cyclic shift | |
| if self.shift_size > 0: | |
| shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
| else: | |
| shifted_x = x | |
| # partition windows | |
| x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C | |
| x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C | |
| # W-MSA/SW-MSA | |
| attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C | |
| # merge windows | |
| attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
| shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C | |
| x = shifted_x | |
| x = x.view(B, H * W, C) | |
| # FFN | |
| x = shortcut + self.drop_path(x) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| x = x.transpose(1, 2).reshape(B, C, H, W) | |
| return x | |
| if __name__ == "__main__": | |
| os.environ['CUDA_VISIBLE_DEVICES']='1' | |
| cb_blovk = CBlock_ln(dim = 16) | |
| x = torch.Tensor(1, 16, 400, 600) | |
| swin = SwinTransformerBlock(dim=16, num_heads=4) | |
| x = cb_blovk(x) | |
| print(x.shape) | |