Spaces:
Runtime error
Runtime error
Create network.py
Browse files- network.py +389 -0
network.py
ADDED
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from util import weight_scaling_init
|
| 11 |
+
|
| 12 |
+
torch.manual_seed(0)
|
| 13 |
+
np.random.seed(0)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch
|
| 17 |
+
# Original Copyright 2017 Victor Huang
|
| 18 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
| 19 |
+
|
| 20 |
+
class ScaledDotProductAttention(nn.Module):
|
| 21 |
+
''' Scaled Dot-Product Attention '''
|
| 22 |
+
|
| 23 |
+
def __init__(self, temperature, attn_dropout=0.1):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.temperature = temperature
|
| 26 |
+
self.dropout = nn.Dropout(attn_dropout)
|
| 27 |
+
|
| 28 |
+
def forward(self, q, k, v, mask=None):
|
| 29 |
+
|
| 30 |
+
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
| 31 |
+
|
| 32 |
+
if mask is not None:
|
| 33 |
+
_MASKING_VALUE = -1e9 if attn.dtype == torch.float32 else -1e4
|
| 34 |
+
attn = attn.masked_fill(mask == 0, _MASKING_VALUE)
|
| 35 |
+
|
| 36 |
+
attn = self.dropout(F.softmax(attn, dim=-1))
|
| 37 |
+
output = torch.matmul(attn, v)
|
| 38 |
+
|
| 39 |
+
return output, attn
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class MultiHeadAttention(nn.Module):
|
| 43 |
+
''' Multi-Head Attention module '''
|
| 44 |
+
|
| 45 |
+
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
|
| 46 |
+
super().__init__()
|
| 47 |
+
|
| 48 |
+
self.n_head = n_head
|
| 49 |
+
self.d_k = d_k
|
| 50 |
+
self.d_v = d_v
|
| 51 |
+
|
| 52 |
+
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
|
| 53 |
+
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
|
| 54 |
+
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
|
| 55 |
+
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
|
| 56 |
+
|
| 57 |
+
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
|
| 58 |
+
|
| 59 |
+
self.dropout = nn.Dropout(dropout)
|
| 60 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def forward(self, q, k, v, mask=None):
|
| 64 |
+
|
| 65 |
+
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
| 66 |
+
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
|
| 67 |
+
|
| 68 |
+
residual = q
|
| 69 |
+
|
| 70 |
+
# Pass through the pre-attention projection: b x lq x (n*dv)
|
| 71 |
+
# Separate different heads: b x lq x n x dv
|
| 72 |
+
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
| 73 |
+
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
| 74 |
+
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
| 75 |
+
|
| 76 |
+
# Transpose for attention dot product: b x n x lq x dv
|
| 77 |
+
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
| 78 |
+
|
| 79 |
+
if mask is not None:
|
| 80 |
+
mask = mask.unsqueeze(1) # For head axis broadcasting.
|
| 81 |
+
|
| 82 |
+
q, attn = self.attention(q, k, v, mask=mask)
|
| 83 |
+
|
| 84 |
+
# Transpose to move the head dimension back: b x lq x n x dv
|
| 85 |
+
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
|
| 86 |
+
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
|
| 87 |
+
q = self.dropout(self.fc(q))
|
| 88 |
+
q += residual
|
| 89 |
+
|
| 90 |
+
q = self.layer_norm(q)
|
| 91 |
+
|
| 92 |
+
return q, attn
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class PositionwiseFeedForward(nn.Module):
|
| 96 |
+
''' A two-feed-forward-layer module '''
|
| 97 |
+
|
| 98 |
+
def __init__(self, d_in, d_hid, dropout=0.1):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
|
| 101 |
+
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
|
| 102 |
+
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
|
| 103 |
+
self.dropout = nn.Dropout(dropout)
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
|
| 107 |
+
residual = x
|
| 108 |
+
|
| 109 |
+
x = self.w_2(F.relu(self.w_1(x)))
|
| 110 |
+
x = self.dropout(x)
|
| 111 |
+
x += residual
|
| 112 |
+
|
| 113 |
+
x = self.layer_norm(x)
|
| 114 |
+
|
| 115 |
+
return x
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def get_subsequent_mask(seq):
|
| 119 |
+
''' For masking out the subsequent info. '''
|
| 120 |
+
sz_b, len_s = seq.size()
|
| 121 |
+
subsequent_mask = (1 - torch.triu(
|
| 122 |
+
torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
|
| 123 |
+
return subsequent_mask
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class PositionalEncoding(nn.Module):
|
| 127 |
+
|
| 128 |
+
def __init__(self, d_hid, n_position=200):
|
| 129 |
+
super(PositionalEncoding, self).__init__()
|
| 130 |
+
|
| 131 |
+
# Not a parameter
|
| 132 |
+
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
|
| 133 |
+
|
| 134 |
+
def _get_sinusoid_encoding_table(self, n_position, d_hid):
|
| 135 |
+
''' Sinusoid position encoding table '''
|
| 136 |
+
# TODO: make it with torch instead of numpy
|
| 137 |
+
|
| 138 |
+
def get_position_angle_vec(position):
|
| 139 |
+
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
| 140 |
+
|
| 141 |
+
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
| 142 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
| 143 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
| 144 |
+
|
| 145 |
+
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
| 146 |
+
|
| 147 |
+
def forward(self, x):
|
| 148 |
+
return x + self.pos_table[:, :x.size(1)].clone().detach()
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class EncoderLayer(nn.Module):
|
| 152 |
+
''' Compose with two layers '''
|
| 153 |
+
|
| 154 |
+
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
|
| 155 |
+
super(EncoderLayer, self).__init__()
|
| 156 |
+
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
|
| 157 |
+
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
|
| 158 |
+
|
| 159 |
+
def forward(self, enc_input, slf_attn_mask=None):
|
| 160 |
+
enc_output, enc_slf_attn = self.slf_attn(
|
| 161 |
+
enc_input, enc_input, enc_input, mask=slf_attn_mask)
|
| 162 |
+
enc_output = self.pos_ffn(enc_output)
|
| 163 |
+
return enc_output, enc_slf_attn
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class TransformerEncoder(nn.Module):
|
| 167 |
+
''' A encoder model with self attention mechanism. '''
|
| 168 |
+
|
| 169 |
+
def __init__(
|
| 170 |
+
self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,
|
| 171 |
+
d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False):
|
| 172 |
+
|
| 173 |
+
super().__init__()
|
| 174 |
+
|
| 175 |
+
# self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
|
| 176 |
+
if n_position > 0:
|
| 177 |
+
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
|
| 178 |
+
else:
|
| 179 |
+
self.position_enc = lambda x: x
|
| 180 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 181 |
+
self.layer_stack = nn.ModuleList([
|
| 182 |
+
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
|
| 183 |
+
for _ in range(n_layers)])
|
| 184 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
| 185 |
+
self.scale_emb = scale_emb
|
| 186 |
+
self.d_model = d_model
|
| 187 |
+
|
| 188 |
+
def forward(self, src_seq, src_mask, return_attns=False):
|
| 189 |
+
|
| 190 |
+
enc_slf_attn_list = []
|
| 191 |
+
|
| 192 |
+
# -- Forward
|
| 193 |
+
# enc_output = self.src_word_emb(src_seq)
|
| 194 |
+
enc_output = src_seq
|
| 195 |
+
if self.scale_emb:
|
| 196 |
+
enc_output *= self.d_model ** 0.5
|
| 197 |
+
enc_output = self.dropout(self.position_enc(enc_output))
|
| 198 |
+
enc_output = self.layer_norm(enc_output)
|
| 199 |
+
|
| 200 |
+
for enc_layer in self.layer_stack:
|
| 201 |
+
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
|
| 202 |
+
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
|
| 203 |
+
|
| 204 |
+
if return_attns:
|
| 205 |
+
return enc_output, enc_slf_attn_list
|
| 206 |
+
return enc_output
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# CleanUNet architecture
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def padding(x, D, K, S):
|
| 213 |
+
"""padding zeroes to x so that denoised audio has the same length"""
|
| 214 |
+
|
| 215 |
+
L = x.shape[-1]
|
| 216 |
+
for _ in range(D):
|
| 217 |
+
if L < K:
|
| 218 |
+
L = 1
|
| 219 |
+
else:
|
| 220 |
+
L = 1 + np.ceil((L - K) / S)
|
| 221 |
+
|
| 222 |
+
for _ in range(D):
|
| 223 |
+
L = (L - 1) * S + K
|
| 224 |
+
|
| 225 |
+
L = int(L)
|
| 226 |
+
x = F.pad(x, (0, L - x.shape[-1]))
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
class CleanUNet(nn.Module):
|
| 231 |
+
""" CleanUNet architecture. """
|
| 232 |
+
|
| 233 |
+
def __init__(self, channels_input=1, channels_output=1,
|
| 234 |
+
channels_H=64, max_H=768,
|
| 235 |
+
encoder_n_layers=8, kernel_size=4, stride=2,
|
| 236 |
+
tsfm_n_layers=3,
|
| 237 |
+
tsfm_n_head=8,
|
| 238 |
+
tsfm_d_model=512,
|
| 239 |
+
tsfm_d_inner=2048):
|
| 240 |
+
|
| 241 |
+
"""
|
| 242 |
+
Parameters:
|
| 243 |
+
channels_input (int): input channels
|
| 244 |
+
channels_output (int): output channels
|
| 245 |
+
channels_H (int): middle channels H that controls capacity
|
| 246 |
+
max_H (int): maximum H
|
| 247 |
+
encoder_n_layers (int): number of encoder/decoder layers D
|
| 248 |
+
kernel_size (int): kernel size K
|
| 249 |
+
stride (int): stride S
|
| 250 |
+
tsfm_n_layers (int): number of self attention blocks N
|
| 251 |
+
tsfm_n_head (int): number of heads in each self attention block
|
| 252 |
+
tsfm_d_model (int): d_model of self attention
|
| 253 |
+
tsfm_d_inner (int): d_inner of self attention
|
| 254 |
+
"""
|
| 255 |
+
|
| 256 |
+
super(CleanUNet, self).__init__()
|
| 257 |
+
|
| 258 |
+
self.channels_input = channels_input
|
| 259 |
+
self.channels_output = channels_output
|
| 260 |
+
self.channels_H = channels_H
|
| 261 |
+
self.max_H = max_H
|
| 262 |
+
self.encoder_n_layers = encoder_n_layers
|
| 263 |
+
self.kernel_size = kernel_size
|
| 264 |
+
self.stride = stride
|
| 265 |
+
|
| 266 |
+
self.tsfm_n_layers = tsfm_n_layers
|
| 267 |
+
self.tsfm_n_head = tsfm_n_head
|
| 268 |
+
self.tsfm_d_model = tsfm_d_model
|
| 269 |
+
self.tsfm_d_inner = tsfm_d_inner
|
| 270 |
+
|
| 271 |
+
# encoder and decoder
|
| 272 |
+
self.encoder = nn.ModuleList()
|
| 273 |
+
self.decoder = nn.ModuleList()
|
| 274 |
+
|
| 275 |
+
for i in range(encoder_n_layers):
|
| 276 |
+
self.encoder.append(nn.Sequential(
|
| 277 |
+
nn.Conv1d(channels_input, channels_H, kernel_size, stride),
|
| 278 |
+
nn.ReLU(),
|
| 279 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
| 280 |
+
nn.GLU(dim=1)
|
| 281 |
+
))
|
| 282 |
+
channels_input = channels_H
|
| 283 |
+
|
| 284 |
+
if i == 0:
|
| 285 |
+
# no relu at end
|
| 286 |
+
self.decoder.append(nn.Sequential(
|
| 287 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
| 288 |
+
nn.GLU(dim=1),
|
| 289 |
+
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride)
|
| 290 |
+
))
|
| 291 |
+
else:
|
| 292 |
+
self.decoder.insert(0, nn.Sequential(
|
| 293 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
| 294 |
+
nn.GLU(dim=1),
|
| 295 |
+
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride),
|
| 296 |
+
nn.ReLU()
|
| 297 |
+
))
|
| 298 |
+
channels_output = channels_H
|
| 299 |
+
|
| 300 |
+
# double H but keep below max_H
|
| 301 |
+
channels_H *= 2
|
| 302 |
+
channels_H = min(channels_H, max_H)
|
| 303 |
+
|
| 304 |
+
# self attention block
|
| 305 |
+
self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1)
|
| 306 |
+
self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model,
|
| 307 |
+
n_layers=tsfm_n_layers,
|
| 308 |
+
n_head=tsfm_n_head,
|
| 309 |
+
d_k=tsfm_d_model // tsfm_n_head,
|
| 310 |
+
d_v=tsfm_d_model // tsfm_n_head,
|
| 311 |
+
d_model=tsfm_d_model,
|
| 312 |
+
d_inner=tsfm_d_inner,
|
| 313 |
+
dropout=0.0,
|
| 314 |
+
n_position=0,
|
| 315 |
+
scale_emb=False)
|
| 316 |
+
self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1)
|
| 317 |
+
|
| 318 |
+
# weight scaling initialization
|
| 319 |
+
for layer in self.modules():
|
| 320 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
| 321 |
+
weight_scaling_init(layer)
|
| 322 |
+
|
| 323 |
+
def forward(self, noisy_audio):
|
| 324 |
+
# (B, L) -> (B, C, L)
|
| 325 |
+
if len(noisy_audio.shape) == 2:
|
| 326 |
+
noisy_audio = noisy_audio.unsqueeze(1)
|
| 327 |
+
B, C, L = noisy_audio.shape
|
| 328 |
+
assert C == 1
|
| 329 |
+
|
| 330 |
+
# normalization and padding
|
| 331 |
+
std = noisy_audio.std(dim=2, keepdim=True) + 1e-3
|
| 332 |
+
noisy_audio /= std
|
| 333 |
+
x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride)
|
| 334 |
+
|
| 335 |
+
# encoder
|
| 336 |
+
skip_connections = []
|
| 337 |
+
for downsampling_block in self.encoder:
|
| 338 |
+
x = downsampling_block(x)
|
| 339 |
+
skip_connections.append(x)
|
| 340 |
+
skip_connections = skip_connections[::-1]
|
| 341 |
+
|
| 342 |
+
# attention mask for causal inference; for non-causal, set attn_mask to None
|
| 343 |
+
len_s = x.shape[-1] # length at bottleneck
|
| 344 |
+
attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool()
|
| 345 |
+
|
| 346 |
+
x = self.tsfm_conv1(x) # C 1024 -> 512
|
| 347 |
+
x = x.permute(0, 2, 1)
|
| 348 |
+
x = self.tsfm_encoder(x, src_mask=attn_mask)
|
| 349 |
+
x = x.permute(0, 2, 1)
|
| 350 |
+
x = self.tsfm_conv2(x) # C 512 -> 1024
|
| 351 |
+
|
| 352 |
+
# decoder
|
| 353 |
+
for i, upsampling_block in enumerate(self.decoder):
|
| 354 |
+
skip_i = skip_connections[i]
|
| 355 |
+
x += skip_i[:, :, :x.shape[-1]]
|
| 356 |
+
x = upsampling_block(x)
|
| 357 |
+
|
| 358 |
+
x = x[:, :, :L] * std
|
| 359 |
+
return x
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
if __name__ == '__main__':
|
| 363 |
+
import json
|
| 364 |
+
import argparse
|
| 365 |
+
import os
|
| 366 |
+
|
| 367 |
+
parser = argparse.ArgumentParser()
|
| 368 |
+
parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json',
|
| 369 |
+
help='JSON file for configuration')
|
| 370 |
+
args = parser.parse_args()
|
| 371 |
+
|
| 372 |
+
with open(args.config) as f:
|
| 373 |
+
data = f.read()
|
| 374 |
+
config = json.loads(data)
|
| 375 |
+
network_config = config["network_config"]
|
| 376 |
+
|
| 377 |
+
model = CleanUNet(**network_config).cuda()
|
| 378 |
+
from util import print_size
|
| 379 |
+
print_size(model, keyword="tsfm")
|
| 380 |
+
|
| 381 |
+
input_data = torch.ones([4,1,int(4.5*16000)]).cuda()
|
| 382 |
+
output = model(input_data)
|
| 383 |
+
print(output.shape)
|
| 384 |
+
|
| 385 |
+
y = torch.rand([4,1,int(4.5*16000)]).cuda()
|
| 386 |
+
loss = torch.nn.MSELoss()(y, output)
|
| 387 |
+
loss.backward()
|
| 388 |
+
print(loss.item())
|
| 389 |
+
|