from llama_cpp import Llama import gradio as gr import os import requests import time # Percorso locale del modello - Qwen2.5-0.5B-Instruct VELOCE MODEL_PATH = "qwen2.5-0.5b-instruct-q4_k_m.gguf" MODEL_URL = "https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/qwen2.5-0.5b-instruct-q4_k_m.gguf" def download_model(): """Scarica il modello se non esiste già""" if not os.path.exists(MODEL_PATH): print("📥 Downloading Qwen2.5-0.5B-Instruct model...") try: response = requests.get(MODEL_URL, stream=True, timeout=300) response.raise_for_status() total_size = int(response.headers.get('content-length', 0)) downloaded = 0 with open(MODEL_PATH, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) downloaded += len(chunk) if total_size > 0: progress = (downloaded / total_size) * 100 print(f"📥 Download progress: {progress:.1f}%") # Verifica che il file sia completo if os.path.getsize(MODEL_PATH) < 100000: # Almeno 100KB print("❌ Downloaded file seems corrupted") os.remove(MODEL_PATH) return False print("✅ Model downloaded successfully!") return True except Exception as e: print(f"❌ Error downloading model: {e}") if os.path.exists(MODEL_PATH): os.remove(MODEL_PATH) # Rimuovi file corrotto return False else: print("✅ Model already exists!") # Verifica che il file esistente sia valido if os.path.getsize(MODEL_PATH) < 100000: print("❌ Existing file seems corrupted, re-downloading...") os.remove(MODEL_PATH) return download_model() # Riprova return True # Scarica il modello model_loaded = download_model() llm = None # Inizializza a None if model_loaded: # Inizializza il modello SUPER OTTIMIZZATO con Qwen2.5-0.5B try: llm = Llama( model_path=MODEL_PATH, n_ctx=2048, # Aumentato grazie al modello più piccolo n_threads=4, # Più thread possibili con modello piccolo n_batch=256, # Batch size ottimizzato use_mlock=False, # Disabilitato per HF Free verbose=False, n_gpu_layers=0, use_mmap=True, # Usa memory mapping per efficienza low_vram=True, # Modalità low memory rope_scaling_type=1, # Ottimizzazione RoPE rope_freq_base=10000.0 ) print("✅ Qwen2.5-0.5B Model loaded successfully!") except Exception as e: print(f"❌ Error loading model: {e}") llm = None else: print("❌ Model not available, using fallback responses") # System prompt OTTIMIZZATO per Qwen2.5 system_prompt = """<|im_start|>system You are an expert D&D Dungeon Master. Create immersive, engaging adventures with vivid descriptions. Always end your responses with a question or choice for the player. Keep responses concise but atmospheric. <|im_end|>""" def generate_random_opening(): """Genera un inizio casuale per l'avventura usando l'AI""" if llm is None: # Fallback solo se il modello non è disponibile import random openings = [ "You enter a torch-lit dungeon. Water drips from ancient stones. A passage splits left and right. Which way?", "You're in a misty forest clearing. An old well sits in the center, rope disappearing into darkness. Investigate?", "The tavern door creaks open. Hooded figures look up from their ale. The barkeep waves you over. Approach?" ] return f"🌟 **New Adventure!** 🌟\n\n{random.choice(openings)}" try: # Prompt ottimizzato per Qwen2.5 opening_prompt = f"""{system_prompt} <|im_start|>user Generate a creative D&D adventure opening in 2-3 sentences. Set an intriguing scene and end with a question for the player. <|im_end|> <|im_start|>assistant""" output = llm( opening_prompt, max_tokens=80, # Leggermente più alto per qualità temperature=0.8, top_p=0.9, repeat_penalty=1.1, stop=["<|im_end|>", "<|im_start|>", "User:", "Player:"] ) opening = output["choices"][0]["text"].strip() # Assicurati che finisca con una domanda if not opening.endswith('?'): opening += " What do you do?" return f"🌟 **New Adventure!** 🌟\n\n{opening}" except Exception as e: print(f"Error generating opening: {e}") return f"🌟 **New Adventure!** 🌟\n\nYou find yourself in a mysterious place. Strange things are happening. What do you do?" chat_history = [] def generate_dm_response_with_timeout(message, timeout=30): """Genera risposta con timeout ridotto per velocità""" if llm is None: # Fallback responses se il modello non è disponibile import random fallbacks = [ "The path ahead is unclear. What's your next move?", "You hear footsteps approaching. How do you react?", "A mysterious door appears before you. Do you open it?", "The ground trembles slightly. What do you do?", "You find a strange artifact. Examine it closely?" ] return random.choice(fallbacks) try: # Prompt ottimizzato per Qwen2.5 con chat template prompt = f"{system_prompt}\n" # Mantieni più contesto grazie al modello efficiente context_turns = min(len(chat_history), 3) # Ultimi 3 turni for turn in chat_history[-context_turns:]: prompt += f"<|im_start|>user\n{turn['user']}\n<|im_end|>\n" prompt += f"<|im_start|>assistant\n{turn['ai']}\n<|im_end|>\n" prompt += f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n" # Parametri ottimizzati per Qwen2.5-0.5B start_time = time.time() output = llm( prompt, max_tokens=100, # Aumentato per qualità migliore stop=["<|im_end|>", "<|im_start|>", "User:", "Player:"], temperature=0.7, top_p=0.8, repeat_penalty=1.2, top_k=40, min_p=0.1 # Miglior controllo qualità ) # Verifica se ha impiegato troppo tempo elapsed_time = time.time() - start_time if elapsed_time > timeout: print(f"Response took {elapsed_time:.1f}s (timeout: {timeout}s)") return "Time passes quickly. What do you do next?" text = output["choices"][0]["text"].strip() # Assicurati che ci sia sempre una domanda if not text.endswith(('?', '!', '.')): text += "?" print(f"✅ Response generated in {elapsed_time:.1f}s") return text except Exception as e: print(f"Error generating response: {e}") return "Something unexpected happens. What do you do next?" def chat(message, history): global chat_history if not message.strip(): return "You stand there, unsure. What would you like to do?" # Genera risposta del DM con timeout ridotto dm_response = generate_dm_response_with_timeout(message) # Aggiorna cronologia (mantieni più turni grazie al modello efficiente) chat_history.append({"user": message, "ai": dm_response}) if len(chat_history) > 5: # Mantieni 5 turni invece di 2 chat_history = chat_history[-5:] return dm_response def reset(): global chat_history chat_history = [] return generate_random_opening() # Crea l'interfaccia SUPER OTTIMIZZATA with gr.Blocks(title="Infinite Dungeon - Lightning Fast", theme=gr.themes.Soft()) as demo: gr.Markdown("# ⚡ Infinite Dungeon - Lightning Fast") gr.Markdown("*Powered by Qwen2.5-0.5B - Optimized for 5-15 second responses*") gr.Markdown("🚀 **Super fast AI D&D with perfect memory retention**") # Inizializza la chat chatbot = gr.Chatbot( value=[(None, "⚡ **Lightning Fast Adventure Ready!** ⚡\n\nPress 'New Adventure' to begin your quest!")], height=400, show_label=False ) msg = gr.Textbox( label="Your action", placeholder="What do you do? (e.g., 'I search the room', 'I attack the orc', 'I cast a spell')", max_lines=2 ) with gr.Row(): submit = gr.Button("⚔️ Act", variant="primary", size="lg") reset_btn = gr.Button("🔄 New Adventure", variant="secondary") gr.Markdown("⚡ **Ultra-fast responses**: 5-15 seconds | 🧠 **Perfect memory**: Never forgets your adventure!") # Funzione per gestire la chat def respond(message, chat_history_ui): if not message.strip(): return "", chat_history_ui # Mostra messaggio di caricamento chat_history_ui.append((message, "🎲 *The DM is thinking...*")) # Genera risposta bot_message = chat(message, chat_history_ui) chat_history_ui[-1] = (message, bot_message) return "", chat_history_ui # Funzione per il reset def reset_chat(): new_opening = reset() return [(None, new_opening)] # Collegamenti eventi msg.submit(respond, [msg, chatbot], [msg, chatbot]) submit.click(respond, [msg, chatbot], [msg, chatbot]) reset_btn.click(reset_chat, outputs=[chatbot]) # Avvia l'app if __name__ == "__main__": demo.launch( server_name="0.0.0.0", server_port=7860, show_error=True )