Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import json | |
| import logging | |
| import torch | |
| from PIL import Image | |
| import spaces | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
| import copy | |
| import random | |
| import time | |
| from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
| from huggingface_hub import HfFileSystem, ModelCard | |
| from huggingface_hub import login | |
| hf_token = os.environ.get("HF_TOKEN") | |
| login(token=hf_token) | |
| # Load LoRAs from JSON file | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| # Initialize the base model | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| base_model = "John6666/real-flux-10b-schnell-fp8-flux" | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
| good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) | |
| MAX_SEED = 2**32-1 | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def update_selection(evt: gr.SelectData, width, height, default_scale, lora_scale): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 768 | |
| height = 1024 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1024 | |
| height = 768 | |
| return ( | |
| #gr.update(placeholder=new_placeholder), | |
| prompt, | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| lora_scale, | |
| ) | |
| def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with calculateDuration("Generating image"): | |
| # Generate image | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt_mash, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| output_type="pil", | |
| good_vae=good_vae, | |
| ): | |
| yield img | |
| def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| if(trigger_word): | |
| if "trigger_position" in selected_lora: | |
| if selected_lora["trigger_position"] == "prepend": | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = f"{prompt} {trigger_word}" | |
| else: | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = prompt | |
| with calculateDuration("Unloading LoRA"): | |
| pipe.unload_lora_weights() | |
| # Load LoRA weights | |
| with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
| if "weights" in selected_lora: | |
| pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
| else: | |
| pipe.load_lora_weights(lora_path) | |
| # Set random seed for reproducibility | |
| with calculateDuration("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
| # Consume the generator to get the final image | |
| final_image = None | |
| step_counter = 0 | |
| for image in image_generator: | |
| step_counter+=1 | |
| final_image = image | |
| yield image, seed, gr.update(value=progress, visible=True) | |
| yield final_image, seed, gr.update(value=progress, visible=False) | |
| run_lora.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
| .card_internal{display: flex;height: 100px;margin-top: .5em} | |
| .card_internal img{margin-right: 1em} | |
| .styler{--form-gap-width: 0px !important} | |
| #progress{height:30px} | |
| #progress .generating{display:none} | |
| .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
| title = gr.HTML( | |
| """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""", | |
| elem_id="title", | |
| ) | |
| # Info blob stating what the app is running | |
| info_blob = gr.HTML( | |
| """<div id="info_blob"> Img. Manufactory Running On: Our 'MytHSTic Color SOON®' Fast (4-8 step) FLUX Schnell-Base Model (at AlekseyCalvin/Mythstic_Color_Soonr_Flux). Now testing HST-triggered historic photo LoRAs (#s2-8,11,12,14,16)for training-eval & merging. </div>""" | |
| ) | |
| # Info blob stating what the app is running | |
| info_blob = gr.HTML( | |
| """<div id="info_blob">Prephrase prompts w/: 1: RCA style || 2-thru-12: HST style analog film photo; HST autochrome photograph || 13: HST style in Peterhof || 14: LEN Vladimir Lenin || 15: SOTS style || 16: crisp photo || 17: TOK hybrid || 18: 2004 photo || 19: TOK portra || 20: flmft Kodachrome || 21: HST Austin Osman Spare style || 22: polaroid photo || 23: pficonics || 24: wh3r3sw4ld0 || 25: retrofuturism || 26: vintage cover || </div>""" | |
| ) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Inventory", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery" | |
| ) | |
| with gr.Column(scale=4): | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=True): | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.5, value=0) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=5) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| default_scale = gr.Checkbox(True, label="Use default LoRA scale") | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=0.95) | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height, default_scale, lora_scale], | |
| outputs=[prompt, selected_info, selected_index, width, height, lora_scale] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], | |
| outputs=[result, seed] | |
| ) | |
| app.queue(default_concurrency_limit=2).launch(show_error=True) | |
| app.launch() |