Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
| import torch | |
| import gradio as gr | |
| import tempfile | |
| import random | |
| import numpy as np | |
| import spaces | |
| from diffusers import WanPipeline, AutoencoderKLWan | |
| from diffusers.utils import export_to_video | |
| # Constants | |
| MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| FIXED_FPS = 16 | |
| DEFAULT_NEGATIVE_PROMPT = ( | |
| "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰," | |
| "最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部," | |
| "画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" | |
| ) | |
| # Setup | |
| dtype = torch.float16 # using float16 for broader compatibility | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load model components on correct device | |
| vae = AutoencoderKLWan.from_pretrained( | |
| MODEL_ID, subfolder="vae", torch_dtype=torch.float32 | |
| ).to(device) | |
| pipe = WanPipeline.from_pretrained( | |
| MODEL_ID, vae=vae, torch_dtype=dtype | |
| ).to(device) | |
| # Warm-up call to reduce cold-start latency | |
| _ = pipe( | |
| prompt="warmup", | |
| negative_prompt=DEFAULT_NEGATIVE_PROMPT, | |
| height=512, | |
| width=768, | |
| num_frames=8, | |
| num_inference_steps=2, | |
| generator=torch.Generator(device=device).manual_seed(0), | |
| ).frames[0] | |
| # Estimate duration for Hugging Face Spaces GPU usage | |
| def get_duration(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps, seed, randomize_seed): | |
| return int(num_steps * 15) | |
| def generate_video( | |
| prompt, | |
| negative_prompt, | |
| height, | |
| width, | |
| num_frames, | |
| guidance_scale, | |
| guidance_scale_2, | |
| num_steps, | |
| seed, | |
| randomize_seed | |
| ): | |
| current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
| generator = torch.Generator(device=device).manual_seed(current_seed) | |
| output = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| guidance_scale=guidance_scale, | |
| guidance_scale_2=guidance_scale_2, | |
| num_inference_steps=num_steps, | |
| generator=generator, | |
| ).frames[0] | |
| with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
| export_to_video(output, tmpfile.name, fps=FIXED_FPS) | |
| return tmpfile.name, current_seed | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## 🎬 Wan2.2 Text-to-Video Generator with Hugging Face Spaces GPU") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", value="Two anthropomorphic cats in comfy boxing gear fight intensely.") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT, lines=3) | |
| height = gr.Slider(360, 1024, value=720, step=16, label="Height") | |
| width = gr.Slider(360, 1920, value=1280, step=16, label="Width") | |
| num_frames = gr.Slider(8, 81, value=81, step=1, label="Number of Frames") | |
| num_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps") | |
| guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.5, label="Guidance Scale") | |
| guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Guidance Scale 2") | |
| seed = gr.Slider(0, MAX_SEED, value=42, step=1, label="Seed") | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| generate_button = gr.Button("🎥 Generate Video") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
| final_seed_display = gr.Number(label="Used Seed", interactive=False) | |
| generate_button.click( | |
| fn=generate_video, | |
| inputs=[prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps, seed, randomize_seed], | |
| outputs=[video_output, final_seed_display], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch() | |