import os import gradio as gr import requests import json from PIL import Image def compare_face(frame1, frame2): url = "https://recognito.p.rapidapi.com/api/face" files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')} headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")} r = requests.post(url=url, files=files, headers=headers) faces = None try: image1 = Image.open(frame1) image2 = Image.open(frame2) face1 = None face2 = None res1 = r.json().get('image1') if res1 is not None: face = res1.get('detection') x1 = face.get('x') y1 = face.get('y') x2 = x1 + face.get('w') y2 = y1 + face.get('h') if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= image1.width: x2 = image1.width - 1 if y2 >= image1.height: y2 = image1.height - 1 face1 = image1.crop((x1, y1, x2, y2)) face_image_ratio = face1.width / float(face1.height) resized_w = int(face_image_ratio * 150) resized_h = 150 face1 = face1.resize((int(resized_w), int(resized_h))) res2 = r.json().get('image2') if res2 is not None: face = res2.get('detection') x1 = face.get('x') y1 = face.get('y') x2 = x1 + face.get('w') y2 = y1 + face.get('h') if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= image2.width: x2 = image2.width - 1 if y2 >= image2.height: y2 = image2.height - 1 face2 = image2.crop((x1, y1, x2, y2)) face_image_ratio = face2.width / float(face2.height) resized_w = int(face_image_ratio * 150) resized_h = 150 face2 = face2.resize((int(resized_w), int(resized_h))) ''' if face1 is not None and face2 is not None: new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80)) new_image.paste(face1,(0,0)) new_image.paste(face2,(face1.width + 10, 0)) faces = new_image.copy() elif face1 is not None and face2 is None: new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80)) new_image.paste(face1,(0,0)) faces = new_image.copy() elif face1 is None and face2 is not None: new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80)) new_image.paste(face2,(face2.width + 10, 0)) faces = new_image.copy() ''' except: pass return [r.json(), [face1, face2]] with gr.Blocks(theme='aliabid94/new-theme') as demo: ''' demo.load( None, None, js=""" () => { const params = new URLSearchParams(window.location.search); if (!params.has('__theme')) { params.set('__theme', 'dark'); window.location.search = params.toString(); } }""", )''' with gr.Row(): with gr.Column(): compare_face_input1 = gr.Image(label="Image1", type='filepath', height=480) gr.Examples(['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg'], inputs=compare_face_input1) compare_face_button = gr.Button("Face Analysis & Verification", variant="primary") with gr.Column(): compare_face_input2 = gr.Image(label="Image2", type='filepath', height=480) gr.Examples(['examples/5.jpg', 'examples/6.jpg', 'examples/7.jpg', 'examples/8.jpg'], inputs=compare_face_input2) with gr.Column(): compare_face_output = gr.Gallery(label="Faces", height=250, columns=[2], rows=[1]) compare_result_output = gr.JSON(label='Result') compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_result_output, compare_face_output]) demo.launch(server_name="0.0.0.0", server_port=7860)