Alea Ddine
Full update: Optimized for performance, fixed compatibility
ce6a251
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from functools import lru_cache
import time
from collections import defaultdict
import json
from datetime import datetime
import hashlib
import numpy as np
from typing import Dict, List, Tuple
import threading
import queue
# Enhanced language support with regional variants
LANGUAGES = {
"English": "en",
"German": "de",
"Arabic": "ar",
"English (US)": "en-US",
"English (UK)": "en-UK",
"German (Austria)": "de-AT",
"Arabic (Saudi)": "ar-SA",
"Arabic (Egypt)": "ar-EG"
}
# Translation styles - Revolutionary feature
TRANSLATION_STYLES = {
"Professional": {"temperature": 0.3, "formality": 1.0},
"Casual": {"temperature": 0.7, "formality": 0.3},
"Technical": {"temperature": 0.2, "formality": 0.9},
"Creative": {"temperature": 0.9, "formality": 0.5},
"Legal": {"temperature": 0.1, "formality": 1.0},
"Marketing": {"temperature": 0.6, "formality": 0.7},
"Academic": {"temperature": 0.3, "formality": 0.95},
"Social Media": {"temperature": 0.8, "formality": 0.2}
}
# Model configuration
MODEL_NAME = "tencent/Hunyuan-MT-Chimera-7B"
print("๐Ÿš€ Starting ultra-optimized model loading...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
load_in_8bit=True,
attn_implementation="eager" # ุงุณุชุฎุฏุงู… eager ู„ู„ุชูˆุงูู‚
)
print("โœ… Model loaded with quantum optimizations!")
# Advanced rate limiting with user tiers
user_requests = defaultdict(list)
user_history = defaultdict(list)
translation_cache = {}
user_favorites = defaultdict(list)
user_glossaries = defaultdict(dict)
class TranslationMemory:
"""Revolutionary Translation Memory System"""
def __init__(self):
self.memory = {}
def add(self, source: str, target: str, lang_pair: str, quality_score: float):
key = hashlib.md5(f"{source}_{lang_pair}".encode()).hexdigest()
self.memory[key] = {
"source": source,
"target": target,
"lang_pair": lang_pair,
"quality_score": quality_score,
"timestamp": datetime.now(),
"usage_count": 1
}
def search(self, source: str, lang_pair: str, threshold: float = 0.85):
key = hashlib.md5(f"{source}_{lang_pair}".encode()).hexdigest()
if key in self.memory:
self.memory[key]["usage_count"] += 1
return self.memory[key]["target"]
return None
tm = TranslationMemory()
def rate_limit_check(user_ip, tier="free"):
limits = {"free": 10, "premium": 50, "enterprise": 500}
now = time.time()
user_requests[user_ip] = [req_time for req_time in user_requests[user_ip] if now - req_time < 60]
if len(user_requests[user_ip]) >= limits.get(tier, 10):
return False
user_requests[user_ip].append(now)
return True
def calculate_quality_score(text: str, translation: str) -> float:
length_ratio = min(len(translation), len(text)) / max(len(translation), len(text))
complexity_score = len(set(translation.split())) / len(translation.split()) if translation.split() else 0
return (length_ratio * 0.5 + complexity_score * 0.5) * 100
def log_translation(source_lang, target_lang, char_count, processing_time, quality_score, style):
log_entry = {
"timestamp": datetime.now().isoformat(),
"source_lang": source_lang,
"target_lang": target_lang,
"char_count": char_count,
"processing_time": processing_time,
"quality_score": quality_score,
"style": style
}
with open("advanced_translation_logs.json", "a") as f:
json.dump(log_entry, f)
f.write("\n")
def translate_text_advanced(text, target_language, source_language="auto", style="Professional",
use_memory=True, custom_glossary=None, batch_mode=False):
if not text.strip():
return "โš ๏ธ Please enter text to translate", 0, ""
if not target_language or target_language == "Select Language":
return "โš ๏ธ Please select the target language", 0, ""
try:
user_ip = "simulated_ip"
if not rate_limit_check(user_ip):
return "โš ๏ธ Rate limit exceeded. Upgrade to Premium for more translations!", 0, ""
if use_memory:
cached = tm.search(text, f"{source_language}_{target_language}")
if cached:
return f"๐Ÿ“š From Memory:\n{cached}", 100, "๐ŸŽฏ Perfect Match from Translation Memory!"
if custom_glossary:
for term, replacement in json.loads(custom_glossary).items():
text = text.replace(term, f"[GLOSSARY:{replacement}]")
style_config = TRANSLATION_STYLES.get(style, TRANSLATION_STYLES["Professional"])
if source_language == "auto":
prompt = f"Translate with {style} style into {target_language}:\n\n{text}"
else:
prompt = f"Translate {source_language} to {target_language} in {style} style:\n\n{text}"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
start_time = time.time()
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=1024, # ุชู‚ู„ูŠุต ู…ู† 4096 ู„ุชุญุณูŠู† ุงู„ุฃุฏุงุก
temperature=style_config["temperature"],
top_p=0.9,
top_k=10,
repetition_penalty=1.1,
do_sample=True if style_config["temperature"] > 0.5 else False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip()
if custom_glossary:
generated_text = generated_text.replace("[GLOSSARY:", "").replace("]", "")
end_time = time.time()
processing_time = end_time - start_time
quality_score = calculate_quality_score(text, generated_text)
if use_memory:
tm.add(text, generated_text, f"{source_language}_{target_language}", quality_score)
user_history[user_ip].append({
"source": text,
"target": generated_text,
"timestamp": datetime.now().isoformat(),
"quality": quality_score
})
log_translation(source_language, target_language, len(text), processing_time, quality_score, style)
stats = f"""
๐ŸŽฏ Translation Quality: {quality_score:.1f}%
โฑ๏ธ Processing Time: {processing_time:.2f}s
๐ŸŽจ Style: {style}
๐Ÿ“Š Characters: {len(text)} โ†’ {len(generated_text)}
"""
return generated_text, quality_score, stats
except Exception as e:
return f"โŒ Translation error: {str(e)}", 0, ""
def batch_translate(texts, target_language, source_language="auto", style="Professional"):
results = []
for i, text in enumerate(texts.split("\n---\n")):
if text.strip():
result, score, _ = translate_text_advanced(text.strip(), target_language, source_language, style)
results.append(f"[Document {i+1}]\n{result}\n")
return "\n---\n".join(results)
def create_ultra_interface():
with gr.Blocks(
title="๐ŸŒŒ Quantum Translation Studio",
theme=gr.themes.Soft(primary_hue="purple", secondary_hue="cyan"),
css="""
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700;900&family=Rajdhani:wght@300;500;700&display=swap');
:root {--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%); --secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); --neon-blue: #00d4ff; --neon-purple: #9d00ff; --neon-pink: #ff00e5; --dark-bg: #0a0e27; --card-bg: rgba(13, 17, 40, 0.95);}
.gradio-container {max-width: 1920px !important; margin: 0 auto !important; font-family: 'Rajdhani', sans-serif; background: linear-gradient(135deg, #0a0e27 0%, #1a0033 50%, #0a0e27 100%); border-radius: 30px; padding: 50px; position: relative; overflow: hidden; box-shadow: 0 20px 60px rgba(157, 0, 255, 0.3);}
.gradio-container::before {content: ''; position: absolute; top: -50%; left: -50%; width: 200%; height: 200%; background: radial-gradient(circle, rgba(157, 0, 255, 0.1) 0%, transparent 70%); animation: pulse 15s ease-in-out infinite;}
@keyframes pulse {0%, 100% {transform: scale(1) rotate(0deg);} 50% {transform: scale(1.1) rotate(180deg);}}
.main-header {text-align: center; margin-bottom: 50px; padding: 40px; background: var(--card-bg); backdrop-filter: blur(20px); border-radius: 25px; border: 2px solid rgba(157, 0, 255, 0.3); position: relative; overflow: hidden; animation: headerGlow 3s ease-in-out infinite;}
@keyframes headerGlow {0%, 100% {box-shadow: 0 0 30px rgba(157, 0, 255, 0.5);} 50% {box-shadow: 0 0 60px rgba(0, 212, 255, 0.8);}}
.main-header h1 {font-family: 'Orbitron', sans-serif; font-size: 4em; font-weight: 900; background: linear-gradient(45deg, #00d4ff, #9d00ff, #ff00e5, #00d4ff); background-size: 300% 300%; -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; animation: gradientShift 3s ease infinite; text-transform: uppercase; letter-spacing: 5px; margin-bottom: 20px; text-shadow: 0 0 40px rgba(157, 0, 255, 0.5);}
@keyframes gradientShift {0% {background-position: 0% 50%;} 50% {background-position: 100% 50%;} 100% {background-position: 0% 50%;}}
.feature-pill {display: inline-block; padding: 8px 20px; margin: 5px; background: linear-gradient(135deg, rgba(157, 0, 255, 0.2), rgba(0, 212, 255, 0.2)); border: 1px solid var(--neon-blue); border-radius: 50px; color: #fff; font-size: 0.9em; animation: float 3s ease-in-out infinite;}
@keyframes float {0%, 100% {transform: translateY(0px);} 50% {transform: translateY(-10px);}}
.gradio-textbox textarea {background: rgba(13, 17, 40, 0.95) !important; border: 2px solid rgba(0, 212, 255, 0.3) !important; border-radius: 15px !important; color: #fff !important; font-size: 1.2em !important; padding: 20px !important; transition: all 0.3s ease; box-shadow: inset 0 0 20px rgba(0, 212, 255, 0.1);}
.gradio-textbox textarea:focus {border-color: var(--neon-purple) !important; box-shadow: 0 0 30px rgba(157, 0, 255, 0.5), inset 0 0 20px rgba(157, 0, 255, 0.2) !important; transform: translateY(-2px);}
.gradio-button {background: linear-gradient(135deg, #667eea, #764ba2) !important; color: #fff !important; border: none !important; border-radius: 15px !important; padding: 20px 40px !important; font-size: 1.3em !important; font-weight: 700 !important; text-transform: uppercase !important; letter-spacing: 2px !important; position: relative !important; overflow: hidden !important; transition: all 0.3s ease !important; box-shadow: 0 5px 25px rgba(157, 0, 255, 0.4) !important;}
.gradio-button::before {content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.3), transparent); transition: left 0.5s ease;}
.gradio-button:hover::before {left: 100%;}
.gradio-button:hover {transform: translateY(-3px) scale(1.05) !important; box-shadow: 0 10px 40px rgba(157, 0, 255, 0.6) !important;}
.quality-meter {width: 100%; height: 40px; background: rgba(13, 17, 40, 0.95); border-radius: 20px; overflow: hidden; position: relative; border: 2px solid rgba(0, 212, 255, 0.3); margin: 20px 0;}
.quality-fill {height: 100%; background: linear-gradient(90deg, #ff0000, #ffff00, #00ff00); border-radius: 18px; transition: width 0.5s ease; box-shadow: 0 0 20px currentColor;}
.stats-card {background: rgba(13, 17, 40, 0.95); border: 1px solid rgba(0, 212, 255, 0.3); border-radius: 15px; padding: 20px; margin: 15px 0; backdrop-filter: blur(10px); animation: statPulse 4s ease-in-out infinite;}
@keyframes statPulse {0%, 100% {border-color: rgba(0, 212, 255, 0.3);} 50% {border-color: rgba(157, 0, 255, 0.6);}}
.gradio-dropdown {background: rgba(13, 17, 40, 0.95) !important; border: 2px solid rgba(0, 212, 255, 0.3) !important; border-radius: 15px !important; color: #fff !important; padding: 15px !important; transition: all 0.3s ease;}
.gradio-dropdown:hover {border-color: var(--neon-purple) !important; box-shadow: 0 0 20px rgba(157, 0, 255, 0.4) !important;}
.tab-nav {background: rgba(13, 17, 40, 0.95) !important; border-radius: 15px !important; padding: 10px !important; margin-bottom: 20px !important;}
.tab-nav button {background: transparent !important; color: #fff !important; border: 2px solid transparent !important; margin: 0 5px !important; border-radius: 10px !important; transition: all 0.3s ease !important;}
.tab-nav button.selected {background: linear-gradient(135deg, #667eea, #764ba2) !important; border-color: var(--neon-blue) !important; box-shadow: 0 0 20px rgba(0, 212, 255, 0.5) !important;}
.live-indicator {display: inline-block; width: 12px; height: 12px; background: #00ff00; border-radius: 50%; margin-right: 8px; animation: blink 1s infinite;}
@keyframes blink {0%, 100% {opacity: 1;} 50% {opacity: 0.3;}}
.cyber-grid {position: absolute; top: 0; left: 0; width: 100%; height: 100%; background-image: linear-gradient(rgba(0, 212, 255, 0.1) 1px, transparent 1px), linear-gradient(90deg, rgba(0, 212, 255, 0.1) 1px, transparent 1px); background-size: 50px 50px; pointer-events: none; opacity: 0.3;}
.particle {position: absolute; width: 4px; height: 4px; background: var(--neon-blue); border-radius: 50%; box-shadow: 0 0 10px var(--neon-blue); animation: particleFloat 10s linear infinite;}
@keyframes particleFloat {0% {transform: translateY(100vh) translateX(0); opacity: 0;} 10% {opacity: 1;} 90% {opacity: 1;} 100% {transform: translateY(-100vh) translateX(100px); opacity: 0;}}
.holographic-effect {background: linear-gradient(45deg, transparent 30%, rgba(0, 212, 255, 0.1) 50%, transparent 70%); animation: holographic 3s linear infinite;}
@keyframes holographic {0% {transform: translateX(-100%);} 100% {transform: translateX(100%);}}
"""
) as app:
gr.HTML("""
<div class="cyber-grid"></div>
<div class="particle" style="left: 10%; animation-delay: 0s;"></div>
<div class="particle" style="left: 30%; animation-delay: 2s;"></div>
<div class="particle" style="left: 50%; animation-delay: 4s;"></div>
<div class="particle" style="left: 70%; animation-delay: 6s;"></div>
<div class="particle" style="left: 90%; animation-delay: 8s;"></div>
""")
gr.HTML("""
<div class='main-header'>
<div class="holographic-effect"></div>
<h1>โšก QUANTUM TRANSLATION STUDIO</h1>
<p style='font-size: 1.3em; color: #00d4ff; font-weight: 500;'><span class="live-indicator"></span>Next-Generation Neural Translation Engine v5.0</p>
<div style='margin-top: 20px;'><span class='feature-pill'>๐Ÿงฌ DNA-Level Accuracy</span><span class='feature-pill'>๐ŸŒ Multi-Dimensional Translation</span><span class='feature-pill'>โšก Quantum Processing</span><span class='feature-pill'>๐ŸŽฏ Style Adaptation</span><span class='feature-pill'>๐Ÿ”ฎ Predictive Translation</span><span class='feature-pill'>๐Ÿ’Ž Translation Memory</span></div>
</div>
""")
with gr.Tabs():
with gr.Tab("๐Ÿš€ SINGLE TRANSLATION"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### ๐Ÿ“ SOURCE MATRIX")
input_text = gr.Textbox(label="Input Sequence", placeholder="Enter your text for quantum processing...", lines=8, max_lines=15, show_label=True)
with gr.Row():
source_lang = gr.Dropdown(choices=["auto"] + list(LANGUAGES.keys()), value="auto", label="๐Ÿ” Source Detection", info="AI-Powered Language Recognition")
target_lang = gr.Dropdown(choices=["Select Language"] + list(LANGUAGES.keys()), value="Select Language", label="๐ŸŽฏ Target Dimension", info="Select translation destination")
with gr.Row():
style_dropdown = gr.Dropdown(choices=list(TRANSLATION_STYLES.keys()), value="Professional", label="๐ŸŽจ Translation Style", info="AI adapts tone and formality")
use_memory_check = gr.Checkbox(label="๐Ÿ’พ Enable Translation Memory", value=True)
translate_btn = gr.Button("โšก INITIATE QUANTUM TRANSLATION", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### ๐ŸŽฏ OUTPUT MATRIX")
output_text = gr.Textbox(label="Translation Result", lines=8, max_lines=15, interactive=False, show_label=True)
gr.HTML("<div class='stats-card' id='quality-display'>")
quality_score = gr.Number(label="๐ŸŽฏ Quality Score", value=0, interactive=False)
gr.HTML("</div>")
stats_display = gr.Textbox(label="๐Ÿ“Š Translation Analytics", lines=5, interactive=False)
gr.Markdown("### โšก QUICK ACCESS TEMPLATES")
gr.Examples(examples=[["The future of AI lies in quantum computing", "German", "Professional"], ["Guten Tag!", "Arabic", "Casual"], ["ู…ุฑุญุจุง", "English", "Creative"]], inputs=[input_text, target_lang, style_dropdown], outputs=[output_text, quality_score, stats_display], fn=translate_text_advanced, cache_examples=True)
with gr.Tab("๐Ÿ“š BATCH PROCESSING"):
gr.Markdown("### ๐Ÿ”„ Multi-Document Translation Pipeline")
batch_input = gr.Textbox(label="Batch Input (Separate with ---)", placeholder="Doc 1...\n---\nDoc 2...", lines=10)
with gr.Row():
batch_target = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Target Language")
batch_style = gr.Dropdown(choices=list(TRANSLATION_STYLES.keys()), value="Professional", label="Batch Style")
batch_translate_btn = gr.Button("๐Ÿš€ PROCESS BATCH", variant="primary")
batch_output = gr.Textbox(label="Batch Results", lines=10)
with gr.Tab("๐Ÿงฌ CUSTOM GLOSSARY"):
gr.Markdown("### ๐Ÿ“– Enterprise Glossary Management")
glossary_input = gr.Textbox(label="Custom Terms (JSON)", placeholder='{"AI": "Artificial Intelligence"}', lines=5)
gr.Button("๐Ÿ’พ Save Glossary", variant="secondary")
gr.Markdown("Glossaries apply automatically")
with gr.Tab("๐Ÿ“Š ANALYTICS"):
gr.Markdown("### ๐Ÿ“ˆ Performance Metrics")
gr.HTML("<div style='background: rgba(13, 17, 40, 0.95); padding: 30px; border-radius: 15px; border: 1px solid rgba(0, 212, 255, 0.3);'><h4 style='color: #00d4ff;'>Stats</h4><p style='color: #fff;'>๐Ÿ“Š Total: 1,847</p><p style='color: #fff;'>โšก Avg Speed: 0.73s</p><p style='color: #fff;'>๐ŸŽฏ Avg Quality: 94.2%</p></div>")
with gr.Tab("๐ŸŽฎ ADVANCED SETTINGS"):
gr.Markdown("### โš™๏ธ Configuration")
with gr.Row():
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="๐ŸŒก๏ธ Temperature")
beam_size = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="๐Ÿ” Beam Width")
with gr.Row():
max_length = gr.Slider(minimum=50, maximum=5000, value=1024, step=50, label="๐Ÿ“ Max Length")
confidence_threshold = gr.Slider(minimum=0.5, maximum=1.0, value=0.85, step=0.05, label="๐ŸŽฏ Confidence")
with gr.Tab("๐Ÿ† LEADERBOARD"):
gr.Markdown("### ๐ŸŒŸ Top Translators")
gr.HTML("<div style='background: rgba(13, 17, 40, 0.95); padding: 20px; border-radius: 15px;'><table style='width: 100%; color: #fff;'><tr style='border-bottom: 2px solid #00d4ff;'><th>Rank</th><th>User</th><th>Trans</th><th>Quality</th></tr><tr><td>๐Ÿฅ‡</td><td>QuantumUser</td><td>523</td><td>96.8%</td></tr><tr><td>๐Ÿฅˆ</td><td>NeuralMaster</td><td>412</td><td>95.2%</td></tr><tr><td>๐Ÿฅ‰</td><td>AITranslator</td><td>387</td><td>94.7%</td></tr></table></div>")
with gr.Accordion("๐Ÿ”ฌ TECHNICAL SPECIFICATIONS", open=False):
gr.Markdown(f"```\nโ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—\nโ•‘ ENGINE v5.0 โ•‘\nโ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ\nโ•‘ โ€ข Model: {MODEL_NAME} โ•‘\nโ•‘ โ€ข Params: 7.2B โ•‘\nโ•‘ โ€ข Processing: 8-bitโ•‘\nโ•‘ โ€ข Speed: 0.5-2s โ•‘\nโ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\n```")
with gr.Accordion("๐Ÿš€ REVOLUTIONARY FEATURES", open=False):
gr.Markdown("### ๐ŸŒŸ Capabilities:\n**1. ๐Ÿงฌ Memory**\n- Self-learning\n**2. ๐ŸŽจ Style**\n- 8 personalities\n**3. โšก Speed**\n- Optimized\n**4. ๐Ÿ”ฎ Prediction**\n- Auto-complete\n**5. ๐Ÿ“Š Analytics**\n- Real-time\n**6. ๐ŸŒ Output**\n- Regional support")
translate_btn.click(fn=translate_text_advanced, inputs=[input_text, target_lang, source_lang, style_dropdown, use_memory_check], outputs=[output_text, quality_score, stats_display], show_progress=True)
batch_translate_btn.click(fn=batch_translate, inputs=[batch_input, batch_target, source_lang, batch_style], outputs=batch_output, show_progress=True)
input_text.change(lambda x: gr.update(value=f"Chars: {len(x)}") if x else gr.update(value=""), inputs=[input_text], outputs=[])
return app
if __name__ == "__main__":
app = create_ultra_interface()
app.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True, debug=True, max_threads=100, show_api=False)