Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from diffusers import FluxImg2ImgPipeline | |
| from PIL import Image | |
| import sys | |
| import spaces | |
| # I only test with FLUX.1-schnell | |
| def process_image(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): | |
| print("start process image process_image") | |
| if image == None: | |
| print("empty input image returned") | |
| return None | |
| pipe = FluxImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) | |
| pipe.to("cuda") | |
| generators = [] | |
| generator = torch.Generator("cuda").manual_seed(seed) | |
| generators.append(generator) | |
| # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline | |
| print(prompt) | |
| output = pipe(prompt=prompt, image=image,generator=generator,strength=strength | |
| ,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256) | |
| # TODO support mask | |
| return output.images[0] | |
| if __name__ == "__main__": | |
| #args input-image input-mask output | |
| image = Image.open(sys.argv[1]) | |
| mask = Image.open(sys.argv[2]) | |
| output = process_image(image,mask) | |
| output.save(sys.argv[3]) |