Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import re | |
| from PIL import Image | |
| import os | |
| import numpy as np | |
| import torch | |
| from diffusers import FluxImg2ImgPipeline | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| hf_token = os.environ.get("HF_TOKEN") | |
| pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",token=hf_token, torch_dtype=torch.bfloat16).to(device) | |
| def sanitize_prompt(prompt): | |
| # Allow only alphanumeric characters, spaces, and basic punctuation | |
| allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]") | |
| sanitized_prompt = allowed_chars.sub("", prompt) | |
| return sanitized_prompt | |
| def convert_to_fit_size(original_width_and_height, maximum_size = 2048): | |
| width, height =original_width_and_height | |
| if width <= maximum_size and height <= maximum_size: | |
| return width,height | |
| if width > height: | |
| scaling_factor = maximum_size / width | |
| else: | |
| scaling_factor = maximum_size / height | |
| new_width = int(width * scaling_factor) | |
| new_height = int(height * scaling_factor) | |
| return new_width, new_height | |
| def adjust_to_multiple_of_32(width: int, height: int): | |
| width = width - (width % 32) | |
| height = height - (height % 32) | |
| return width, height | |
| def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)): | |
| #print("start process_images") | |
| progress(0, desc="Starting") | |
| def process_img2img(image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4): | |
| #print("start process_img2img") | |
| if image == None: | |
| print("empty input image returned") | |
| return None | |
| generators = [] | |
| generator = torch.Generator(device).manual_seed(seed) | |
| generators.append(generator) | |
| fit_width,fit_height = convert_to_fit_size(image.size) | |
| #print(f"fit {width}x{height}") | |
| width,height = adjust_to_multiple_of_32(fit_width,fit_height) | |
| #print(f"multiple {width}x{height}") | |
| image = image.resize((width, height), Image.LANCZOS) | |
| #mask_image = mask_image.resize((width, height), Image.NEAREST) | |
| # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline | |
| #print(prompt) | |
| output = pipe(prompt=prompt, image=image,generator=generator,strength=strength,width=width,height=height | |
| ,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256) | |
| pil_image = output.images[0]#Image.fromarray() | |
| new_width,new_height = pil_image.size | |
| # resize back multiple of 32 | |
| if (new_width!=fit_width) or (new_height!=fit_height): | |
| resized_image= pil_image.resize((fit_width,fit_height),Image.LANCZOS) | |
| return resized_image | |
| return pil_image | |
| output = process_img2img(image,prompt,strength,seed,inference_step) | |
| #print("end process_images") | |
| return output | |
| def read_file(path: str) -> str: | |
| with open(path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| return content | |
| css=""" | |
| #col-left { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| #col-right { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| .grid-container { | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| gap:10px | |
| } | |
| .image { | |
| width: 128px; | |
| height: 128px; | |
| object-fit: cover; | |
| } | |
| .text { | |
| font-size: 16px; | |
| } | |
| """ | |
| with gr.Blocks(css=css, elem_id="demo-container") as demo: | |
| with gr.Column(): | |
| gr.HTML(read_file("demo_header.html")) | |
| gr.HTML(read_file("demo_tools.html")) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload") | |
| with gr.Row(elem_id="prompt-container", equal_height=False): | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt") | |
| btn = gr.Button("Img2Img", elem_id="run_button",variant="primary") | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| with gr.Row( equal_height=True): | |
| strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength") | |
| seed = gr.Number(value=100, minimum=0, step=1, label="seed") | |
| inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step") | |
| id_input=gr.Text(label="Name", visible=False) | |
| with gr.Column(): | |
| image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg") | |
| gr.Examples( | |
| examples=[ | |
| ["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"], | |
| ["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"], | |
| ["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"], | |
| ["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"] | |
| ] | |
| , | |
| inputs=[image,image_out,prompt], | |
| ) | |
| gr.HTML( | |
| gr.HTML(read_file("demo_footer.html")) | |
| ) | |
| gr.on( | |
| triggers=[btn.click, prompt.submit], | |
| fn = process_images, | |
| inputs = [image,prompt,strength,seed,inference_step], | |
| outputs = [image_out] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |