Spaces:
Sleeping
Sleeping
Create question_generation.py
Browse files- question_generation.py +97 -0
question_generation.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
@torch.no_grad()
|
| 5 |
+
def question_generation_sampling(
|
| 6 |
+
g1_model,
|
| 7 |
+
g1_tokenizer,
|
| 8 |
+
g2_model,
|
| 9 |
+
g2_tokenizer,
|
| 10 |
+
context,
|
| 11 |
+
num_questions,
|
| 12 |
+
device,
|
| 13 |
+
):
|
| 14 |
+
qa_input_ids = prepare_qa_input(
|
| 15 |
+
g1_tokenizer,
|
| 16 |
+
context=context,
|
| 17 |
+
device=device,
|
| 18 |
+
)
|
| 19 |
+
max_repeated_sampling = int(num_questions * 1.5) # sometimes generated question+answer is invalid
|
| 20 |
+
num_valid_questions = 0
|
| 21 |
+
questions = []
|
| 22 |
+
for q_ in range(max_repeated_sampling):
|
| 23 |
+
# Stage G.1: question+answer generation
|
| 24 |
+
outputs = g1_model.generate(
|
| 25 |
+
qa_input_ids,
|
| 26 |
+
max_new_tokens=128,
|
| 27 |
+
do_sample=True,
|
| 28 |
+
)
|
| 29 |
+
question_answer = g1_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 30 |
+
question_answer = question_answer.replace(g1_tokenizer.pad_token, "").replace(g1_tokenizer.eos_token, "")
|
| 31 |
+
question_answer_split = question_answer.split(g1_tokenizer.sep_token)
|
| 32 |
+
if len(question_answer_split) == 2:
|
| 33 |
+
# valid Question + Annswer output
|
| 34 |
+
num_valid_questions += 1
|
| 35 |
+
else:
|
| 36 |
+
continue
|
| 37 |
+
question = question_answer_split[0].strip()
|
| 38 |
+
answer = question_answer_split[1].strip()
|
| 39 |
+
|
| 40 |
+
# Stage G.2: Distractor Generation
|
| 41 |
+
distractor_input_ids = prepare_distractor_input(
|
| 42 |
+
g2_tokenizer,
|
| 43 |
+
context = context,
|
| 44 |
+
question = question,
|
| 45 |
+
answer = answer,
|
| 46 |
+
device = device,
|
| 47 |
+
separator = g2_tokenizer.sep_token,
|
| 48 |
+
)
|
| 49 |
+
outputs = g2_model.generate(
|
| 50 |
+
distractor_input_ids,
|
| 51 |
+
max_new_tokens=128,
|
| 52 |
+
do_sample=True,
|
| 53 |
+
)
|
| 54 |
+
distractors = g2_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 55 |
+
distractors = distractors.replace(g2_tokenizer.pad_token, "").replace(g2_tokenizer.eos_token, "")
|
| 56 |
+
distractors = re.sub("<extra\S+>", g2_tokenizer.sep_token, distractors)
|
| 57 |
+
distractors = [y.strip() for y in distractors.split(g2_tokenizer.sep_token)]
|
| 58 |
+
options = [answer] + distractors
|
| 59 |
+
|
| 60 |
+
while len(options) < 4:
|
| 61 |
+
options.append(options[-1])
|
| 62 |
+
|
| 63 |
+
question_item = {
|
| 64 |
+
'question': question,
|
| 65 |
+
'options': options,
|
| 66 |
+
}
|
| 67 |
+
questions.append(question_item)
|
| 68 |
+
if num_valid_questions == num_questions:
|
| 69 |
+
break
|
| 70 |
+
return questions
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def prepare_qa_input(t5_tokenizer, context, device):
|
| 74 |
+
"""
|
| 75 |
+
input: context
|
| 76 |
+
output: question <sep> answer
|
| 77 |
+
"""
|
| 78 |
+
encoding = t5_tokenizer(
|
| 79 |
+
[context],
|
| 80 |
+
return_tensors="pt",
|
| 81 |
+
)
|
| 82 |
+
input_ids = encoding.input_ids.to(device)
|
| 83 |
+
return input_ids
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def prepare_distractor_input(t5_tokenizer, context, question, answer, device, separator='<sep>'):
|
| 87 |
+
"""
|
| 88 |
+
input: question <sep> answer <sep> article
|
| 89 |
+
output: distractor1 <sep> distractor2 <sep> distractor3
|
| 90 |
+
"""
|
| 91 |
+
input_text = question + ' ' + separator + ' ' + answer + ' ' + separator + ' ' + context
|
| 92 |
+
encoding = t5_tokenizer(
|
| 93 |
+
[input_text],
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
)
|
| 96 |
+
input_ids = encoding.input_ids.to(device)
|
| 97 |
+
return input_ids
|