Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import subprocess
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
import cv2
|
11 |
+
from datetime import datetime
|
12 |
+
from fastapi import FastAPI
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
|
17 |
+
#----------Start of theme----------
|
18 |
+
theme = gr.themes.Soft(
|
19 |
+
primary_hue="zinc",
|
20 |
+
secondary_hue="stone",
|
21 |
+
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
|
22 |
+
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
|
23 |
+
).set(
|
24 |
+
body_background_fill='*primary_100',
|
25 |
+
body_text_color='secondary_600',
|
26 |
+
body_text_color_subdued='*primary_500',
|
27 |
+
body_text_weight='500',
|
28 |
+
background_fill_primary='*primary_100',
|
29 |
+
background_fill_secondary='*secondary_200',
|
30 |
+
color_accent='*primary_300',
|
31 |
+
border_color_accent_subdued='*primary_400',
|
32 |
+
border_color_primary='*primary_400',
|
33 |
+
block_background_fill='*primary_300',
|
34 |
+
block_border_width='*panel_border_width',
|
35 |
+
block_info_text_color='*primary_700',
|
36 |
+
block_info_text_size='*text_md',
|
37 |
+
panel_background_fill='*primary_200',
|
38 |
+
accordion_text_color='*primary_600',
|
39 |
+
table_text_color='*primary_600',
|
40 |
+
input_background_fill='*primary_50',
|
41 |
+
input_background_fill_focus='*primary_100',
|
42 |
+
button_primary_background_fill='*primary_500',
|
43 |
+
button_primary_background_fill_hover='*primary_400',
|
44 |
+
button_primary_text_color='*primary_50',
|
45 |
+
button_primary_text_color_hover='*primary_100',
|
46 |
+
button_cancel_background_fill='*primary_500',
|
47 |
+
button_cancel_background_fill_hover='*primary_400'
|
48 |
+
)
|
49 |
+
#----------End of theme----------
|
50 |
+
|
51 |
+
def flip_image(x):
|
52 |
+
return np.fliplr(x)
|
53 |
+
|
54 |
+
def basic_filter(image, filter_type):
|
55 |
+
"""Apply basic image filters"""
|
56 |
+
if filter_type == "Gray Toning":
|
57 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
58 |
+
elif filter_type == "Sepia":
|
59 |
+
sepia_filter = np.array([
|
60 |
+
[0.272, 0.534, 0.131],
|
61 |
+
[0.349, 0.686, 0.168],
|
62 |
+
[0.393, 0.769, 0.189]
|
63 |
+
])
|
64 |
+
return cv2.transform(image, sepia_filter)
|
65 |
+
elif filter_type == "X-ray":
|
66 |
+
# Improved X-ray effect
|
67 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
68 |
+
inverted = cv2.bitwise_not(gray)
|
69 |
+
# Increase contrast
|
70 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
71 |
+
enhanced = clahe.apply(inverted)
|
72 |
+
# Sharpen
|
73 |
+
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
74 |
+
sharpened = cv2.filter2D(enhanced, -1, kernel)
|
75 |
+
return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR)
|
76 |
+
elif filter_type == "Burn it":
|
77 |
+
return cv2.GaussianBlur(image, (15, 15), 0)
|
78 |
+
|
79 |
+
def classic_filter(image, filter_type):
|
80 |
+
"""Classical display filters"""
|
81 |
+
if filter_type == "Charcoal Effect":
|
82 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
83 |
+
inverted = cv2.bitwise_not(gray)
|
84 |
+
blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
|
85 |
+
sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256)
|
86 |
+
return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
|
87 |
+
|
88 |
+
elif filter_type == "Sharpen":
|
89 |
+
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
90 |
+
return cv2.filter2D(image, -1, kernel)
|
91 |
+
|
92 |
+
elif filter_type == "Embossing":
|
93 |
+
kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]])
|
94 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
95 |
+
emboss = cv2.filter2D(gray, -1, kernel) + 128
|
96 |
+
return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR)
|
97 |
+
|
98 |
+
elif filter_type == "Edge Detection":
|
99 |
+
edges = cv2.Canny(image, 100, 200)
|
100 |
+
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
|
101 |
+
|
102 |
+
def creative_filters(image, filter_type):
|
103 |
+
"""Creative and unusual image filters"""
|
104 |
+
if filter_type == "Pixel Art":
|
105 |
+
h, w = image.shape[:2]
|
106 |
+
piksel_size = 20
|
107 |
+
small = cv2.resize(image, (w//piksel_size, h//piksel_size))
|
108 |
+
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
|
109 |
+
|
110 |
+
elif filter_type == "Mosaic Effect":
|
111 |
+
h, w = image.shape[:2]
|
112 |
+
mosaic_size = 30
|
113 |
+
for i in range(0, h, mosaic_size):
|
114 |
+
for j in range(0, w, mosaic_size):
|
115 |
+
roi = image[i:i+mosaic_size, j:j+mosaic_size]
|
116 |
+
if roi.size > 0:
|
117 |
+
color = np.mean(roi, axis=(0,1))
|
118 |
+
image[i:i+mosaic_size, j:j+mosaic_size] = color
|
119 |
+
return image
|
120 |
+
|
121 |
+
elif filter_type == "Rainbow":
|
122 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
123 |
+
h, w = image.shape[:2]
|
124 |
+
for i in range(h):
|
125 |
+
hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8)
|
126 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
127 |
+
|
128 |
+
elif filter_type == "Night Vision":
|
129 |
+
green_image = image.copy()
|
130 |
+
green_image[:,:,0] = 0 # Blue channel
|
131 |
+
green_image[:,:,2] = 0 # Red channel
|
132 |
+
return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50)
|
133 |
+
|
134 |
+
def special_effects(image, filter_type):
|
135 |
+
"""Apply special effects"""
|
136 |
+
if filter_type == "Matrix Effect":
|
137 |
+
green_matrix = np.zeros_like(image)
|
138 |
+
green_matrix[:,:,1] = image[:,:,1] # Only green channel
|
139 |
+
random_brightness = np.random.randint(0, 255, size=image.shape[:2])
|
140 |
+
green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255)
|
141 |
+
return green_matrix
|
142 |
+
|
143 |
+
elif filter_type == "Wave Effect":
|
144 |
+
rows, cols = image.shape[:2]
|
145 |
+
img_output = np.zeros(image.shape, dtype=image.dtype)
|
146 |
+
|
147 |
+
for i in range(rows):
|
148 |
+
for j in range(cols):
|
149 |
+
offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180))
|
150 |
+
offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180))
|
151 |
+
if i+offset_x < rows and j+offset_y < cols:
|
152 |
+
img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols]
|
153 |
+
else:
|
154 |
+
img_output[i,j] = 0
|
155 |
+
return img_output
|
156 |
+
|
157 |
+
elif filter_type == "Time Stamp":
|
158 |
+
output = image.copy()
|
159 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
160 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
161 |
+
cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2)
|
162 |
+
return output
|
163 |
+
|
164 |
+
elif filter_type == "Glitch Effect":
|
165 |
+
glitch = image.copy()
|
166 |
+
h, w = image.shape[:2]
|
167 |
+
for _ in range(10):
|
168 |
+
x1 = random.randint(0, w-50)
|
169 |
+
y1 = random.randint(0, h-50)
|
170 |
+
x2 = random.randint(x1, min(x1+50, w))
|
171 |
+
y2 = random.randint(y1, min(y1+50, h))
|
172 |
+
glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2],
|
173 |
+
random.randint(-20, 20),
|
174 |
+
axis=random.randint(0, 1))
|
175 |
+
return glitch
|
176 |
+
|
177 |
+
def artistic_filters(image, filter_type):
|
178 |
+
"""Applies artistic image filters"""
|
179 |
+
if filter_type == "Pop Art":
|
180 |
+
img_small = cv2.resize(image, None, fx=0.5, fy=0.5)
|
181 |
+
img_color = cv2.resize(img_small, (image.shape[1], image.shape[0]))
|
182 |
+
for _ in range(2):
|
183 |
+
img_color = cv2.bilateralFilter(img_color, 9, 300, 300)
|
184 |
+
hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV)
|
185 |
+
hsv[:,:,1] = hsv[:,:,1]*1.5
|
186 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
187 |
+
|
188 |
+
elif filter_type == "Oil Paint":
|
189 |
+
ret = np.float32(image.copy())
|
190 |
+
ret = cv2.bilateralFilter(ret, 9, 75, 75)
|
191 |
+
ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15)
|
192 |
+
ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4)
|
193 |
+
return np.uint8(ret)
|
194 |
+
|
195 |
+
elif filter_type == "Cartoon":
|
196 |
+
# Improved cartoon effect
|
197 |
+
color = image.copy()
|
198 |
+
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
|
199 |
+
gray = cv2.medianBlur(gray, 5)
|
200 |
+
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
|
201 |
+
color = cv2.bilateralFilter(color, 9, 300, 300)
|
202 |
+
cartoon = cv2.bitwise_and(color, color, mask=edges)
|
203 |
+
# Increase color saturation
|
204 |
+
hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV)
|
205 |
+
hsv[:,:,1] = hsv[:,:,1]*1.4 # saturation increase
|
206 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
207 |
+
|
208 |
+
def atmospheric_filters(image, filter_type):
|
209 |
+
"""atmospheric filters"""
|
210 |
+
if filter_type == "Autumn":
|
211 |
+
# Genhanced autumn effect
|
212 |
+
autumn_filter = np.array([
|
213 |
+
[0.393, 0.769, 0.189],
|
214 |
+
[0.349, 0.686, 0.168],
|
215 |
+
[0.272, 0.534, 0.131]
|
216 |
+
])
|
217 |
+
autumn = cv2.transform(image, autumn_filter)
|
218 |
+
# Increase color temperature
|
219 |
+
hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV)
|
220 |
+
hsv[:,:,0] = hsv[:,:,0]*0.8 # Shift to orange/yellow tones
|
221 |
+
hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation
|
222 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
223 |
+
|
224 |
+
elif filter_type == "Nostalgia":
|
225 |
+
# Improved nostalgia effect
|
226 |
+
# Reduce contrast and add yellowish tone
|
227 |
+
image = cv2.convertScaleAbs(image, alpha=0.9, beta=10)
|
228 |
+
sepia = cv2.transform(image, np.array([
|
229 |
+
[0.393, 0.769, 0.189],
|
230 |
+
[0.349, 0.686, 0.168],
|
231 |
+
[0.272, 0.534, 0.131]
|
232 |
+
]))
|
233 |
+
# Darkening effect in corners
|
234 |
+
h, w = image.shape[:2]
|
235 |
+
kernel = np.zeros((h, w))
|
236 |
+
center = (h//2, w//2)
|
237 |
+
for i in range(h):
|
238 |
+
for j in range(w):
|
239 |
+
dist = np.sqrt((i-center[0])**2 + (j-center[1])**2)
|
240 |
+
kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2))
|
241 |
+
kernel = np.dstack([kernel]*3)
|
242 |
+
return cv2.multiply(sepia, kernel).astype(np.uint8)
|
243 |
+
|
244 |
+
elif filter_type == "Increase Brightness":
|
245 |
+
# Improved brightness boost
|
246 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
247 |
+
# Increase brightness
|
248 |
+
hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30)
|
249 |
+
# Also increase the contrast slightly
|
250 |
+
return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0)
|
251 |
+
|
252 |
+
def image_processing(image, filter_type):
|
253 |
+
"""Main image processing function"""
|
254 |
+
if image is None:
|
255 |
+
return None
|
256 |
+
|
257 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
258 |
+
|
259 |
+
# Process by filter categories
|
260 |
+
basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"]
|
261 |
+
classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"]
|
262 |
+
creative_filters_list = ["Rainbow", "Night Vision"]
|
263 |
+
special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"]
|
264 |
+
artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"]
|
265 |
+
atmospheric_filters_list = ["Autumn", "Increase Brightness"]
|
266 |
+
|
267 |
+
if filter_type in basic_filter_list:
|
268 |
+
output = basic_filter(image, filter_type)
|
269 |
+
elif filter_type in classic_filter_list:
|
270 |
+
output = classic_filter(image, filter_type)
|
271 |
+
elif filter_type in creative_filters_list:
|
272 |
+
output = creative_filters(image, filter_type)
|
273 |
+
elif filter_type in special_effects_list:
|
274 |
+
output = special_effects(image, filter_type)
|
275 |
+
elif filter_type in artistic_filters_list:
|
276 |
+
output = artistic_filters(image, filter_type)
|
277 |
+
elif filter_type in atmospheric_filters_list:
|
278 |
+
output = atmospheric_filters(image, filter_type)
|
279 |
+
else:
|
280 |
+
output = image
|
281 |
+
|
282 |
+
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output
|
283 |
+
|
284 |
+
|
285 |
+
css = """
|
286 |
+
#app-container {
|
287 |
+
max-width: 1200px;
|
288 |
+
margin-left: auto;
|
289 |
+
margin-right: auto;
|
290 |
+
}
|
291 |
+
"""
|
292 |
+
|
293 |
+
# Gradio interface
|
294 |
+
with gr.Blocks(theme=theme, css=css) as app:
|
295 |
+
gr.HTML("<center><h6>🎨 Image Studio</h6></center>")
|
296 |
+
|
297 |
+
with gr.Tab("Image to Prompt"):
|
298 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
299 |
+
|
300 |
+
# Initialize Florence model
|
301 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
302 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
303 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
304 |
+
|
305 |
+
# api_key = os.getenv("HF_READ_TOKEN")
|
306 |
+
|
307 |
+
def generate_caption(image):
|
308 |
+
if not isinstance(image, Image.Image):
|
309 |
+
image = Image.fromarray(image)
|
310 |
+
|
311 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
312 |
+
generated_ids = florence_model.generate(
|
313 |
+
input_ids=inputs["input_ids"],
|
314 |
+
pixel_values=inputs["pixel_values"],
|
315 |
+
max_new_tokens=1024,
|
316 |
+
early_stopping=False,
|
317 |
+
do_sample=False,
|
318 |
+
num_beams=3,
|
319 |
+
)
|
320 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
321 |
+
parsed_answer = florence_processor.post_process_generation(
|
322 |
+
generated_text,
|
323 |
+
task="<MORE_DETAILED_CAPTION>",
|
324 |
+
image_size=(image.width, image.height)
|
325 |
+
)
|
326 |
+
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
|
327 |
+
print("\n\nGeneration completed!:"+ prompt)
|
328 |
+
return prompt
|
329 |
+
|
330 |
+
io = gr.Interface(generate_caption,
|
331 |
+
inputs=[gr.Image(label="Input Image")],
|
332 |
+
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
|
333 |
+
# gr.Image(label="Output Image")
|
334 |
+
]
|
335 |
+
)
|
336 |
+
|
337 |
+
with gr.Tab("Text to Image"):
|
338 |
+
gr.HTML("<center><h6>ℹ️ Please do not run the models at the same time, the models are currently running on the CPU, which might affect performance.</h6></center>")
|
339 |
+
with gr.Accordion("Flux-RealismLora", open=False):
|
340 |
+
model1 = gr.load("models/XLabs-AI/flux-RealismLora")
|
341 |
+
with gr.Accordion("Flux--schnell-realism", open=False):
|
342 |
+
model2 = gr.load("models/hugovntr/flux-schnell-realism")
|
343 |
+
with gr.Accordion("Flux--schnell-LoRA", open=False):
|
344 |
+
model3 = gr.load("models/Octree/flux-schnell-lora")
|
345 |
+
|
346 |
+
with gr.Tab("Flip Image"):
|
347 |
+
with gr.Row():
|
348 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
349 |
+
image_output = gr.Image(format="png")
|
350 |
+
with gr.Row():
|
351 |
+
image_button = gr.Button("Run", variant='primary')
|
352 |
+
image_button.click(flip_image, inputs=image_input, outputs=image_output)
|
353 |
+
with gr.Tab("Image Filters"):
|
354 |
+
with gr.Row():
|
355 |
+
with gr.Column():
|
356 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
357 |
+
with gr.Accordion("ℹ️ Filter Categories", open=True):
|
358 |
+
filter_type = gr.Dropdown(
|
359 |
+
[
|
360 |
+
# Basic Filters
|
361 |
+
"Gray Toning", "Sepia", "X-ray", "Burn it",
|
362 |
+
# Classic Filter
|
363 |
+
"Charcoal Effect", "Sharpen", "Embossing", "Edge Detection",
|
364 |
+
# Creative Filters
|
365 |
+
"Rainbow", "Night Vision",
|
366 |
+
# Special Effects
|
367 |
+
"Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect",
|
368 |
+
# Artistic Filters
|
369 |
+
"Pop Art", "Oil Paint", "Cartoon",
|
370 |
+
# Atmospheric Filters
|
371 |
+
"Autumn", "Increase Brightness"
|
372 |
+
],
|
373 |
+
label="🎭 Select Filter",
|
374 |
+
info="Choose the effect you want"
|
375 |
+
)
|
376 |
+
submit_button = gr.Button("✨ Apply Filter", variant="primary")
|
377 |
+
|
378 |
+
with gr.Column():
|
379 |
+
image_output = gr.Image(label="🖼️ Filtered Image")
|
380 |
+
|
381 |
+
submit_button.click(
|
382 |
+
image_processing,
|
383 |
+
inputs=[image_input, filter_type],
|
384 |
+
outputs=image_output
|
385 |
+
)
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
with gr.Tab("Image Upscaler"):
|
390 |
+
with gr.Row():
|
391 |
+
with gr.Column():
|
392 |
+
def upscale_image(input_image, radio_input):
|
393 |
+
upscale_factor = radio_input
|
394 |
+
output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC)
|
395 |
+
return output_image
|
396 |
+
|
397 |
+
radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2)
|
398 |
+
|
399 |
+
iface = gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image", format="png"), title="Image Upscaler")
|
400 |
+
|
401 |
+
app.launch(share=True)
|