import gradio as gr from huggingface_hub import hf_hub_download from PIL import Image import yolov5 # Downloading the model from HuggingFace model = torch.hub.load('ultralytics/yolov5', 'custom', path='myYOLO/best.pt', force_reload=True) # Prediction function def predict(im, threshold=0.50): """ Performs prediction using Datacat YOLOv5 model """ # We could resize the image, but the application handles high definition for now # g = (size / max(im.size)) # gain # im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # initializing confidence threshold model.conf = threshold # inference results = model(im) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image title = "YOLOv5 - Auction sale catalogues layout analysis" description = "

YOLOv5 Gradio demo for auction sales catalogues layout analysis. Detecting titles and catalogues entries.

" article = "

YOLOv5 source code : Source code | PyTorch Hub

" demo=gr.Interface(fn=predict, inputs=[gr.Image(type="pil", label="document image"), gr.Slider(maximum=1, step=0.01, value=0.50)], outputs=gr.Image(type="pil", label="annotated document").style(height=700), title=title, description=description, article=article, theme="huggingface") if __name__ == "__main__": demo.launch(debug=True)