import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import PyPDFLoader,DirectoryLoader from langchain.chains.summarize import load_summarize_chain from transformers import T5Tokenizer, T5ForConditionalGeneration from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch import base64 #model and tokenizer # load the model & tokenizer #checkpoint = "LaMini-Flan-T5-248M" #tokenizer = T5Tokenizer.from_pretrained(checkpoint) #base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32) # Load model directly tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-248M") base_model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-Flan-T5-248M") #file loader and preprocessing def file_preprocessing(file): loader = PyPDFLoader(file) pages = loader.load_and_split() text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50) texts = text_splitter.split_documents(pages) final_texts = "" for text in texts: final_texts = final_texts + text.page_content return final_texts, len(final_texts) # LLM pipeline- using summarization pipleine def llm_pipeline(filepath): input_text, input_length = file_preprocessing(filepath) pipe_sum = pipeline( 'summarization', model = base_model, tokenizer = tokenizer, max_length = input_length//5, min_length = 25) result = pipe_sum(input_text) result = result[0]['summary_text'] return result @st.cache_data #to improve performance by caching def displayPDF(file): # Opening file from file path as read binary with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') # Embedding PDF file in the web browser pdf_display = F'' # Displaying File st.markdown(pdf_display, unsafe_allow_html=True) #streamlit code st.set_page_config(page_title='pdf insight',layout="wide",page_icon="📃",initial_sidebar_state="expanded") def main(): st.title("PDF Insight") uploaded_file = st.file_uploader("Upload the PDF", type=['pdf']) if uploaded_file is not None: if st.button("Summarize"): col1, col2 = st.columns([0.4,0.6]) filepath = "uploaded_pdfs/"+uploaded_file.name with open(filepath, "wb") as temp_file: temp_file.write(uploaded_file.read()) with col1: st.info("Uploaded PDF") pdf_view = displayPDF(filepath) with col2: summary = llm_pipeline(filepath) st.info("Summarization") st.success(summary) #initializing the app if __name__ == "__main__": main()