import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load GPT-2 model and tokenizer @st.cache(allow_output_mutation=True) def load_model(): tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") return tokenizer, model tokenizer, model = load_model() st.title("Blog Post Generator") st.write("Generate a blog post for a given topic using GPT-2.") # User input for the blog post topic topic = st.text_input("Enter the topic for your blog post:") # Generate blog post button if st.button("Generate Blog Post"): if topic: # Prepare the input for the model input_text = f"Write a blog post about {topic}." inputs = tokenizer.encode(input_text, return_tensors="pt") # Generate the blog post using GPT-2 outputs = model.generate(inputs, max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True) # Decode the generated text blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write("### Generated Blog Post:") st.write(blog_post) else: st.write("Please enter a topic to generate a blog post.")