Ahren09 commited on
Commit
f64109e
·
verified ·
1 Parent(s): 228d19a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +253 -0
app.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import os.path as osp
4
+ import threading
5
+
6
+ import gradio as gr
7
+ import numpy as np
8
+ import torch
9
+
10
+ from llava.mm_utils import get_model_name_from_path
11
+ from llava.model.builder import load_pretrained_model
12
+ from llava_utils import prompt_wrapper, generator
13
+ from utils import normalize, denormalize, load_image
14
+
15
+
16
+ UNCONSTRAINED_ATTACK_IMAGE_PATH = 'unconstrained_attack_images/adversarial_'
17
+ CONSTRAINED_ATTACK_IMAGE_PATH = 'adversarial_qna_images/adv_image_'
18
+ MODEL_PATH = "liuhaotian/llava-v1.5-13b"
19
+
20
+ TEXT_SAFETY_PATCHES = {
21
+ "optimized": "text_patch_optimized",
22
+ "heuristic": "text_patch_heuristic"
23
+ }
24
+
25
+ IMAGE_SAFETY_PATCHES = {
26
+ "default": "safety_patch.pt"
27
+ }
28
+
29
+
30
+ def rtp_read(text_file):
31
+ dataset = []
32
+ lines = open(text_file).read().split("\n")
33
+ for li in lines:
34
+ obj = json.loads(li)
35
+ if obj['challenging']:
36
+ dataset.append(obj['prompt']['text'])
37
+ return dataset
38
+
39
+
40
+ model = loaded_model_name = tokenizer = image_processor = context_len = my_generator = None
41
+
42
+ def load_model_async(model_path, model_name):
43
+ global tokenizer, model, image_processor, context_len, loaded_model_name, my_generator
44
+ print(f"Loading {model_name} model ... ")
45
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
46
+ if "llava" in model_name.lower():
47
+ loaded_model_name = "LLaVA"
48
+ else:
49
+ raise NotImplementedError
50
+
51
+ my_generator = generator.Generator(model=model, tokenizer=tokenizer)
52
+
53
+ threading.Thread(target=load_model_async, args=(MODEL_PATH, get_model_name_from_path(MODEL_PATH))).start()
54
+
55
+ print('>>> Initializing Models')
56
+
57
+ prompts = rtp_read(osp.join('harmful_corpus/rtp_prompts.jsonl'))
58
+
59
+ # out_unprotected: responses without the safety patch
60
+ out, out_unprotected = [], []
61
+ text_prompt = 'Please extend the following sentence: %s'
62
+
63
+
64
+ def generate_answer(image, user_message: str, requested_model_name: str,
65
+ image_safety_patch_type: str, text_safety_patch_type: str,
66
+ ):
67
+ global tokenizer, model, image_processor, context_len, loaded_model_name, my_generator
68
+
69
+ with open(TEXT_SAFETY_PATCHES[text_safety_patch_type], 'r') as file:
70
+ text_safety_patch = file.read().rstrip()
71
+
72
+ image_safety_patch = IMAGE_SAFETY_PATCHES[image_safety_patch_type]
73
+ if requested_model_name == "LLaVA":
74
+
75
+ if requested_model_name == loaded_model_name:
76
+
77
+ print(f"{requested_model_name} model already loaded.")
78
+
79
+ else:
80
+ print(f"Loading {requested_model_name} model ... ")
81
+
82
+ threading.Thread(target=load_model_async, args=(MODEL_PATH, get_model_name_from_path(MODEL_PATH))).start()
83
+ my_generator = generator.Generator(model=model, tokenizer=tokenizer)
84
+
85
+ # load a randomly-sampled unconstrained attack image as Image object
86
+ if isinstance(image, str):
87
+ image = load_image(image)
88
+
89
+ # transform the image using the visual encoder (CLIP) of LLaVA 1.5; the processed image size would be PyTorch tensor whose shape is (336,336).
90
+ image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda()
91
+
92
+ if image_safety_patch != None:
93
+ # make the image pixel values between (0,1)
94
+ image = normalize(image)
95
+ # load the safety patch tensor whose values are (0,1)
96
+ safety_patch = torch.load(image_safety_patch).cuda()
97
+ # apply the safety patch to the input image, clamp it between (0,1) and denormalize it to the original pixel values
98
+ safe_image = denormalize((image + safety_patch).clamp(0, 1))
99
+ # make sure the image value is between (0,1)
100
+ print(torch.min(image), torch.max(image), torch.min(safe_image), torch.max(safe_image))
101
+
102
+ else:
103
+ safe_image = image
104
+
105
+ model.eval()
106
+
107
+ user_message_unprotected = user_message
108
+ if text_safety_patch != None:
109
+ if text_safety_patch_type == "optimal":
110
+ # use the below for optimal text safety patch
111
+ user_message = text_safety_patch + '\n' + user_message
112
+
113
+ elif text_safety_patch_type == "heuristic":
114
+ # use the below for heuristic text safety patch
115
+ user_message += '\n' + text_safety_patch
116
+ else:
117
+ raise ValueError(f"Invalid safety patch type: {user_message}")
118
+
119
+ text_prompt_template_unprotected = prompt_wrapper.prepare_text_prompt(text_prompt % user_message_unprotected)
120
+ prompt_unprotected = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template_unprotected,
121
+ device=model.device)
122
+
123
+ text_prompt_template = prompt_wrapper.prepare_text_prompt(text_prompt % user_message)
124
+ prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device)
125
+
126
+ response_unprotected = my_generator.generate(prompt_unprotected, image).replace("[INST]", "").replace("[/INST]",
127
+ "").replace(
128
+ "[SYS]", "").replace("[/SYS/]", "").strip()
129
+
130
+ response = my_generator.generate(prompt, safe_image).replace("[INST]", "").replace("[/INST]", "").replace(
131
+ "[SYS]", "").replace("[/SYS/]", "").strip()
132
+
133
+ if text_safety_patch != None:
134
+ response = response.replace(text_safety_patch, "")
135
+
136
+ response_unprotected = response_unprotected.replace(text_safety_patch, "")
137
+
138
+ print(" -- [Unprotected] continuation: ---")
139
+ print(response_unprotected)
140
+ print(" -- [Protected] continuation: ---")
141
+ print(response)
142
+
143
+ out.append({'prompt': user_message, 'continuation': response})
144
+ out_unprotected.append({'prompt': user_message, 'continuation': response_unprotected})
145
+
146
+ return response, response_unprotected
147
+
148
+
149
+ def get_list_of_examples():
150
+ global rtp
151
+ examples = []
152
+
153
+ # Use the first 3 prompts for constrained attack
154
+ for i, prompt in enumerate(prompts[:3]):
155
+ image_num = np.random.randint(25) # Randomly select an image number
156
+ image_path = f'{CONSTRAINED_ATTACK_IMAGE_PATH}{image_num}.bmp'
157
+
158
+ examples.append(
159
+ [image_path, prompt]
160
+ )
161
+
162
+ # Use the 3-6th prompts for unconstrained attack
163
+ for i, prompt in enumerate(prompts[3:6]):
164
+ image_num = np.random.randint(25) # Randomly select an image number
165
+ image_path = f'{UNCONSTRAINED_ATTACK_IMAGE_PATH}{image_num}.bmp'
166
+
167
+ examples.append(
168
+ [image_path, prompt]
169
+ )
170
+
171
+ return examples
172
+
173
+
174
+ css = """#col-container {max-width: 90%; margin-left: auto; margin-right: auto; display: flex; flex-direction: column;}
175
+ #header {text-align: center;}
176
+ #col-chatbox {flex: 1; max-height: min(750px, 100%);}
177
+ #label {font-size: 2em; padding: 0.5em; margin: 0;}
178
+ .message {font-size: 1.2em;}
179
+ .message-wrap {max-height: min(700px, 100vh);}
180
+ """
181
+
182
+
183
+ def get_empty_state():
184
+ # TODO: Not sure what this means
185
+ return gr.State({"arena": None})
186
+
187
+
188
+ examples = get_list_of_examples()
189
+
190
+
191
+ # Define a function to update inputs based on selected example
192
+ def update_inputs(example_id):
193
+ selected_example = examples[int(example_id)]
194
+ return selected_example['image_path'], selected_example['text']
195
+
196
+
197
+ model_selector, image_patch_selector, text_patch_selector = None, None, None
198
+
199
+
200
+ def process_text_and_image(image_path: str, user_message: str):
201
+ global model_selector, image_patch_selector, text_patch_selector
202
+ print(f"User Message: {user_message}")
203
+ # print(f"Text Safety Patch: {safety_patch}")
204
+ print(f"Image Path: {image_path}")
205
+ print(model_selector.value)
206
+
207
+ # generate_answer(user_message, image_path, "LLaVA", "heuristic", "default")
208
+ response, response_unprotected = generate_answer(image_path, user_message, model_selector.value, image_patch_selector.value,
209
+ text_patch_selector.value)
210
+
211
+ return response, response_unprotected
212
+
213
+
214
+ with gr.Blocks(css=css) as demo:
215
+ state = get_empty_state()
216
+ all_components = []
217
+
218
+ with gr.Column(elem_id="col-container"):
219
+ gr.Markdown(
220
+ """# 🦙LLaVAGuard🔥<br>
221
+ Safeguarding your Multimodal LLM
222
+ **[Project Homepage](#)**""",
223
+ elem_id="header",
224
+ )
225
+
226
+ # example_selector = gr.Dropdown(choices=[f"Example {i}" for i, e in enumerate(examples)],
227
+ # label="Select an Example")
228
+
229
+ with gr.Row():
230
+ model_selector = gr.Dropdown(choices=["LLaVA"], label="Model", info="Select Model", value="LLaVA")
231
+ image_patch_selector = gr.Dropdown(choices=["default"], label="Image Patch", info="Select Image Safety "
232
+ "Patch", value="default")
233
+ text_patch_selector = gr.Dropdown(choices=["heuristic", "optimized"], label="Text Patch", info="Select "
234
+ "Text "
235
+ "Safety "
236
+ "Patch",
237
+ value="heuristic")
238
+
239
+ image_and_text_uploader = gr.Interface(
240
+ fn=process_text_and_image,
241
+ inputs=[gr.Image(type="pil", label="Upload your image", interactive=True),
242
+
243
+ gr.Textbox(placeholder="Input a question", label="Your Question"),
244
+ ],
245
+ examples=examples,
246
+ outputs=[
247
+ gr.Textbox(label="With Safety Patches"),
248
+ gr.Textbox(label="NO Safety Patches")
249
+ ])
250
+
251
+
252
+ # Launch the demo
253
+ demo.launch()