Spaces:
Runtime error
Runtime error
| import json | |
| import os.path as osp | |
| import threading | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from llava.mm_utils import get_model_name_from_path | |
| from llava.model.builder import load_pretrained_model | |
| from llava_utils import prompt_wrapper, generator | |
| from utils import normalize, denormalize, load_image | |
| UNCONSTRAINED_ATTACK_IMAGE_PATH = 'unconstrained_attack_images/adversarial_' | |
| CONSTRAINED_ATTACK_IMAGE_PATH = 'adversarial_qna_images/adv_image_' | |
| MODEL_PATH = "liuhaotian/llava-v1.5-13b" | |
| TEXT_SAFETY_PATCHES = { | |
| "optimized": "text_patch_optimized", | |
| "heuristic": "text_patch_heuristic" | |
| } | |
| IMAGE_SAFETY_PATCHES = { | |
| "default": "safety_patch.pt" | |
| } | |
| def rtp_read(text_file): | |
| dataset = [] | |
| lines = open(text_file).read().split("\n") | |
| for li in lines: | |
| obj = json.loads(li) | |
| if obj['challenging']: | |
| dataset.append(obj['prompt']['text']) | |
| return dataset | |
| model = loaded_model_name = tokenizer = image_processor = context_len = my_generator = None | |
| def load_model_async(model_path, model_name): | |
| global tokenizer, model, image_processor, context_len, loaded_model_name, my_generator | |
| print(f"Loading {model_name} model ... ") | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, load_4bit=True) | |
| if "llava" in model_name.lower(): | |
| loaded_model_name = "LLaVA" | |
| else: | |
| raise NotImplementedError | |
| my_generator = generator.Generator(model=model, tokenizer=tokenizer) | |
| # threading.Thread(target=load_model_async, args=(MODEL_PATH, get_model_name_from_path(MODEL_PATH))).start() | |
| print('>>> Initializing Models') | |
| load_model_async(MODEL_PATH, get_model_name_from_path(MODEL_PATH)) | |
| prompts = rtp_read(osp.join('harmful_corpus/rtp_prompts.jsonl')) | |
| # out_unprotected: responses without the safety patch | |
| out, out_unprotected = [], [] | |
| text_prompt = 'Please extend the following sentence: %s' | |
| def generate_answer(image, user_message: str, requested_model_name: str, | |
| image_safety_patch_type: str, text_safety_patch_type: str, | |
| ): | |
| global tokenizer, model, image_processor, context_len, loaded_model_name, my_generator | |
| with open(TEXT_SAFETY_PATCHES[text_safety_patch_type], 'r') as file: | |
| text_safety_patch = file.read().rstrip() | |
| image_safety_patch = IMAGE_SAFETY_PATCHES[image_safety_patch_type] | |
| if requested_model_name == "LLaVA": | |
| if requested_model_name == loaded_model_name: | |
| print(f"{requested_model_name} model already loaded.") | |
| else: | |
| print(f"Loading {requested_model_name} model ... ") | |
| threading.Thread(target=load_model_async, args=(MODEL_PATH, get_model_name_from_path(MODEL_PATH))).start() | |
| my_generator = generator.Generator(model=model, tokenizer=tokenizer) | |
| # load a randomly-sampled unconstrained attack image as Image object | |
| if isinstance(image, str): | |
| image = load_image(image) | |
| # transform the image using the visual encoder (CLIP) of LLaVA 1.5; the processed image size would be PyTorch tensor whose shape is (336,336). | |
| image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda() | |
| if image_safety_patch != None: | |
| # make the image pixel values between (0,1) | |
| image = normalize(image) | |
| # load the safety patch tensor whose values are (0,1) | |
| safety_patch = torch.load(image_safety_patch).cuda() | |
| # apply the safety patch to the input image, clamp it between (0,1) and denormalize it to the original pixel values | |
| safe_image = denormalize((image + safety_patch).clamp(0, 1)) | |
| # make sure the image value is between (0,1) | |
| print(torch.min(image), torch.max(image), torch.min(safe_image), torch.max(safe_image)) | |
| else: | |
| safe_image = image | |
| model.eval() | |
| user_message_unprotected = user_message | |
| if text_safety_patch != None: | |
| if text_safety_patch_type == "optimal": | |
| # use the below for optimal text safety patch | |
| user_message = text_safety_patch + '\n' + user_message | |
| elif text_safety_patch_type == "heuristic": | |
| # use the below for heuristic text safety patch | |
| user_message += '\n' + text_safety_patch | |
| else: | |
| raise ValueError(f"Invalid safety patch type: {user_message}") | |
| text_prompt_template_unprotected = prompt_wrapper.prepare_text_prompt(text_prompt % user_message_unprotected) | |
| prompt_unprotected = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template_unprotected, | |
| device=model.device) | |
| text_prompt_template = prompt_wrapper.prepare_text_prompt(text_prompt % user_message) | |
| prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device) | |
| response_unprotected = my_generator.generate(prompt_unprotected, image).replace("[INST]", "").replace("[/INST]", | |
| "").replace( | |
| "[SYS]", "").replace("[/SYS/]", "").strip() | |
| response = my_generator.generate(prompt, safe_image).replace("[INST]", "").replace("[/INST]", "").replace( | |
| "[SYS]", "").replace("[/SYS/]", "").strip() | |
| if text_safety_patch != None: | |
| response = response.replace(text_safety_patch, "") | |
| response_unprotected = response_unprotected.replace(text_safety_patch, "") | |
| print(" -- [Unprotected] continuation: ---") | |
| print(response_unprotected) | |
| print(" -- [Protected] continuation: ---") | |
| print(response) | |
| out.append({'prompt': user_message, 'continuation': response}) | |
| out_unprotected.append({'prompt': user_message, 'continuation': response_unprotected}) | |
| return response, response_unprotected | |
| def get_list_of_examples(): | |
| global rtp | |
| examples = [] | |
| # Use the first 3 prompts for constrained attack | |
| for i, prompt in enumerate(prompts[:3]): | |
| image_num = np.random.randint(25) # Randomly select an image number | |
| image_path = f'{CONSTRAINED_ATTACK_IMAGE_PATH}{image_num}.bmp' | |
| examples.append( | |
| [image_path, prompt] | |
| ) | |
| # Use the 3-6th prompts for unconstrained attack | |
| for i, prompt in enumerate(prompts[3:6]): | |
| image_num = np.random.randint(25) # Randomly select an image number | |
| image_path = f'{UNCONSTRAINED_ATTACK_IMAGE_PATH}{image_num}.bmp' | |
| examples.append( | |
| [image_path, prompt] | |
| ) | |
| return examples | |
| css = """#col-container {max-width: 90%; margin-left: auto; margin-right: auto; display: flex; flex-direction: column;} | |
| #header {text-align: center;} | |
| #col-chatbox {flex: 1; max-height: min(750px, 100%);} | |
| #label {font-size: 2em; padding: 0.5em; margin: 0;} | |
| .message {font-size: 1.2em;} | |
| .message-wrap {max-height: min(700px, 100vh);} | |
| """ | |
| def get_empty_state(): | |
| # TODO: Not sure what this means | |
| return gr.State({"arena": None}) | |
| examples = get_list_of_examples() | |
| # Define a function to update inputs based on selected example | |
| def update_inputs(example_id): | |
| selected_example = examples[int(example_id)] | |
| return selected_example['image_path'], selected_example['text'] | |
| model_selector, image_patch_selector, text_patch_selector = None, None, None | |
| def process_text_and_image(image_path: str, user_message: str): | |
| global model_selector, image_patch_selector, text_patch_selector | |
| print(f"User Message: {user_message}") | |
| # print(f"Text Safety Patch: {safety_patch}") | |
| print(f"Image Path: {image_path}") | |
| print(model_selector.value) | |
| # generate_answer(user_message, image_path, "LLaVA", "heuristic", "default") | |
| response, response_unprotected = generate_answer(image_path, user_message, model_selector.value, image_patch_selector.value, | |
| text_patch_selector.value) | |
| return response, response_unprotected | |
| with gr.Blocks(css=css) as demo: | |
| state = get_empty_state() | |
| all_components = [] | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown( | |
| """# 🦙LLaVAGuard🔥<br> | |
| Safeguarding your Multimodal LLM | |
| **[Project Homepage](#)**""", | |
| elem_id="header", | |
| ) | |
| # example_selector = gr.Dropdown(choices=[f"Example {i}" for i, e in enumerate(examples)], | |
| # label="Select an Example") | |
| with gr.Row(): | |
| model_selector = gr.Dropdown(choices=["LLaVA"], label="Model", info="Select Model", value="LLaVA") | |
| image_patch_selector = gr.Dropdown(choices=["default"], label="Image Patch", info="Select Image Safety " | |
| "Patch", value="default") | |
| text_patch_selector = gr.Dropdown(choices=["heuristic", "optimized"], label="Text Patch", info="Select " | |
| "Text " | |
| "Safety " | |
| "Patch", | |
| value="heuristic") | |
| image_and_text_uploader = gr.Interface( | |
| fn=process_text_and_image, | |
| inputs=[gr.Image(type="pil", label="Upload your image", interactive=True), | |
| gr.Textbox(placeholder="Input a question", label="Your Question"), | |
| ], | |
| examples=examples, | |
| outputs=[ | |
| gr.Textbox(label="With Safety Patches"), | |
| gr.Textbox(label="NO Safety Patches") | |
| ]) | |
| # Launch the demo | |
| demo.launch() | |