Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- MRI/best_model.pth +3 -0
- app-ver-2.py +189 -0
MRI/best_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54389b37590563b2d9c36901e8cd8ab5e8840460cca8cf792b4ab5a620775bfa
|
3 |
+
size 1833570
|
app-ver-2.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# gradio_app.py
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
# --- Models ---
|
12 |
+
class EnhancedCNN_MRI(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super(EnhancedCNN_MRI, self).__init__()
|
15 |
+
self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
|
16 |
+
self.bn1 = nn.BatchNorm2d(32)
|
17 |
+
self.pool1 = nn.MaxPool2d(2)
|
18 |
+
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
|
19 |
+
self.bn2 = nn.BatchNorm2d(64)
|
20 |
+
self.pool2 = nn.MaxPool2d(2)
|
21 |
+
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
|
22 |
+
self.bn3 = nn.BatchNorm2d(128)
|
23 |
+
self.pool3 = nn.MaxPool2d(2)
|
24 |
+
self.conv4 = nn.Conv2d(128, 256, 3, padding=1)
|
25 |
+
self.bn4 = nn.BatchNorm2d(256)
|
26 |
+
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
|
27 |
+
self.fc1 = nn.Linear(256, 256)
|
28 |
+
self.dropout = nn.Dropout(0.5)
|
29 |
+
self.fc2 = nn.Linear(256, 1)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.pool1(F.relu(self.bn1(self.conv1(x))))
|
33 |
+
x = self.pool2(F.relu(self.bn2(self.conv2(x))))
|
34 |
+
x = self.pool3(F.relu(self.bn3(self.conv3(x))))
|
35 |
+
x = self.global_pool(F.relu(self.bn4(self.conv4(x))))
|
36 |
+
x = torch.flatten(x, 1)
|
37 |
+
x = self.dropout(F.relu(self.fc1(x)))
|
38 |
+
return self.fc2(x)
|
39 |
+
|
40 |
+
|
41 |
+
class EnhancedCNN_CT(nn.Module):
|
42 |
+
def __init__(self):
|
43 |
+
super(EnhancedCNN_CT, self).__init__()
|
44 |
+
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
|
45 |
+
self.bn1 = nn.BatchNorm2d(32)
|
46 |
+
self.pool1 = nn.MaxPool2d(2)
|
47 |
+
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
|
48 |
+
self.bn2 = nn.BatchNorm2d(64)
|
49 |
+
self.pool2 = nn.MaxPool2d(2)
|
50 |
+
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
|
51 |
+
self.bn3 = nn.BatchNorm2d(128)
|
52 |
+
self.pool3 = nn.MaxPool2d(2)
|
53 |
+
self.conv4 = nn.Conv2d(128, 256, 3, padding=1)
|
54 |
+
self.bn4 = nn.BatchNorm2d(256)
|
55 |
+
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
|
56 |
+
self.fc1 = nn.Linear(256, 256)
|
57 |
+
self.dropout = nn.Dropout(0.5)
|
58 |
+
self.fc2 = nn.Linear(256, 1)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x = self.pool1(F.relu(self.bn1(self.conv1(x))))
|
62 |
+
x = self.pool2(F.relu(self.bn2(self.conv2(x))))
|
63 |
+
x = self.pool3(F.relu(self.bn3(self.conv3(x))))
|
64 |
+
x = self.global_pool(F.relu(self.bn4(self.conv4(x))))
|
65 |
+
x = torch.flatten(x, 1)
|
66 |
+
x = self.dropout(F.relu(self.fc1(x)))
|
67 |
+
return self.fc2(x)
|
68 |
+
|
69 |
+
|
70 |
+
class Sub_Class_CNNModel_CT(nn.Module):
|
71 |
+
def __init__(self, num_classes=2):
|
72 |
+
super(Sub_Class_CNNModel_CT, self).__init__()
|
73 |
+
self.features = nn.Sequential(
|
74 |
+
nn.Conv2d(3, 32, kernel_size=3, padding=1),
|
75 |
+
nn.BatchNorm2d(32),
|
76 |
+
nn.ReLU(),
|
77 |
+
nn.MaxPool2d(2),
|
78 |
+
nn.Dropout(0.25),
|
79 |
+
|
80 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
81 |
+
nn.BatchNorm2d(64),
|
82 |
+
nn.ReLU(),
|
83 |
+
nn.MaxPool2d(2),
|
84 |
+
nn.Dropout(0.25),
|
85 |
+
|
86 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
87 |
+
nn.BatchNorm2d(128),
|
88 |
+
nn.ReLU(),
|
89 |
+
nn.MaxPool2d(2),
|
90 |
+
nn.Dropout(0.25)
|
91 |
+
)
|
92 |
+
self.classifier = nn.Sequential(
|
93 |
+
nn.Flatten(),
|
94 |
+
nn.Linear(128 * 28 * 28, 512),
|
95 |
+
nn.BatchNorm1d(512),
|
96 |
+
nn.ReLU(),
|
97 |
+
nn.Dropout(0.5),
|
98 |
+
nn.Linear(512, num_classes)
|
99 |
+
)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
x = self.features(x)
|
103 |
+
x = self.classifier(x)
|
104 |
+
return torch.softmax(x, dim=1)
|
105 |
+
|
106 |
+
|
107 |
+
# --- Preprocessing ---
|
108 |
+
def preprocess_mri(img):
|
109 |
+
img = img.convert("L")
|
110 |
+
transform = transforms.Compose([
|
111 |
+
transforms.Resize((224, 224)),
|
112 |
+
transforms.ToTensor()
|
113 |
+
])
|
114 |
+
return transform(img).unsqueeze(0)
|
115 |
+
|
116 |
+
|
117 |
+
def preprocess_ct(img):
|
118 |
+
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
119 |
+
resized = cv2.resize(img_cv, (224, 224))
|
120 |
+
img_pil = Image.fromarray(cv2.cvtColor(resized, cv2.COLOR_BGR2RGB))
|
121 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
122 |
+
return transform(img_pil).unsqueeze(0)
|
123 |
+
|
124 |
+
|
125 |
+
def preprocess_sub_ct(img):
|
126 |
+
img = img.convert("RGB")
|
127 |
+
transform = transforms.Compose([
|
128 |
+
transforms.Resize((224, 224)),
|
129 |
+
transforms.ToTensor(),
|
130 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
131 |
+
])
|
132 |
+
return transform(img).unsqueeze(0)
|
133 |
+
|
134 |
+
|
135 |
+
# --- Inference Functions ---
|
136 |
+
def classify_mri(image):
|
137 |
+
model = EnhancedCNN_MRI()
|
138 |
+
model.load_state_dict(torch.load('MRI/best_model.pth', map_location='cpu'))
|
139 |
+
model.eval()
|
140 |
+
tensor = preprocess_mri(image)
|
141 |
+
with torch.no_grad():
|
142 |
+
output = model(tensor)
|
143 |
+
pred = torch.sigmoid(output).item()
|
144 |
+
return ("Stroke", float(pred)) if pred >= 0.5 else ("Normal", 1 - float(pred))
|
145 |
+
|
146 |
+
|
147 |
+
def classify_ct(image):
|
148 |
+
model = EnhancedCNN_CT()
|
149 |
+
model.load_state_dict(torch.load('CT/best_model_CT.pth', map_location='cpu'))
|
150 |
+
model.eval()
|
151 |
+
tensor = preprocess_ct(image)
|
152 |
+
with torch.no_grad():
|
153 |
+
output = model(tensor)
|
154 |
+
pred = torch.sigmoid(output).item()
|
155 |
+
|
156 |
+
if pred < 0.5:
|
157 |
+
return ("Normal", 1 - float(pred))
|
158 |
+
|
159 |
+
sub_model = Sub_Class_CNNModel_CT()
|
160 |
+
sub_model.load_state_dict(torch.load('CT/cnn_model_sub_class.pth', map_location='cpu'))
|
161 |
+
sub_model.eval()
|
162 |
+
tensor_sub = preprocess_sub_ct(image)
|
163 |
+
with torch.no_grad():
|
164 |
+
sub_output = sub_model(tensor_sub)
|
165 |
+
sub_pred = torch.argmax(sub_output, dim=1).item()
|
166 |
+
sub_conf = sub_output[0][sub_pred].item()
|
167 |
+
|
168 |
+
sub_class_names = ['hemorrhagic', 'ischaemic']
|
169 |
+
return (f"Stroke - {sub_class_names[sub_pred]}", float(sub_conf))
|
170 |
+
|
171 |
+
|
172 |
+
# --- Gradio Interface ---
|
173 |
+
mri_ui = gr.Interface(
|
174 |
+
fn=classify_mri,
|
175 |
+
inputs=gr.Image(type="pil"),
|
176 |
+
outputs=[gr.Label(label="Prediction"), gr.Number(label="Confidence")],
|
177 |
+
title="🧠 MRI Stroke Classifier"
|
178 |
+
)
|
179 |
+
|
180 |
+
ct_ui = gr.Interface(
|
181 |
+
fn=classify_ct,
|
182 |
+
inputs=gr.Image(type="pil"),
|
183 |
+
outputs=[gr.Label(label="Prediction"), gr.Number(label="Confidence")],
|
184 |
+
title="🧠 CT Stroke + Subtype Classifier"
|
185 |
+
)
|
186 |
+
|
187 |
+
demo = gr.TabbedInterface([mri_ui, ct_ui], ["MRI Classifier", "CT Classifier"])
|
188 |
+
|
189 |
+
demo.launch()
|