| In the following example, it is shown how a BERT model of type bert-base-cased can be benchmarked. | |
| from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments | |
| args = PyTorchBenchmarkArguments(models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]) | |
| benchmark = PyTorchBenchmark(args) | |
| </pt> | |
| <tf>py | |
| from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments | |
| args = TensorFlowBenchmarkArguments( | |
| models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] | |
| ) | |
| benchmark = TensorFlowBenchmark(args) | |
| Here, three arguments are given to the benchmark argument data classes, namely models, batch_sizes, and | |
| sequence_lengths. |