Agrannya commited on
Commit
7a28077
·
verified ·
1 Parent(s): 165158d

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .gradio/certificate.pem +31 -0
  2. DoomScroller_Analizer.ipynb +0 -0
  3. README.md +4 -9
  4. deploy.py +218 -0
.gradio/certificate.pem ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
3
+ TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
4
+ cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
5
+ WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
6
+ ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
7
+ MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
8
+ h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
9
+ 0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
10
+ A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
11
+ T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
12
+ B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
13
+ B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
14
+ KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
15
+ OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
16
+ jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
17
+ qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
18
+ rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
19
+ HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
20
+ hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
21
+ ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
22
+ 3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
23
+ NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
24
+ ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
25
+ TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
26
+ jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
27
+ oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
28
+ 4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
29
+ mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
30
+ emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
31
+ -----END CERTIFICATE-----
DoomScroller_Analizer.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,12 +1,7 @@
1
  ---
2
- title: Insagram Reel Analyzer
3
- emoji: 🐢
4
- colorFrom: blue
5
- colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 5.34.2
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Insagram_reel_Analyzer
3
+ app_file: deploy.py
 
 
4
  sdk: gradio
5
+ sdk_version: 5.31.0
 
 
6
  ---
7
+ # Doom_Scroller_Instagram
 
deploy.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io # Import io for handling image bytes
2
+
3
+ # Global variables to maintain state across Gradio calls
4
+ # Assuming cl and explore_reels_list are already defined and populated by login/fetch steps
5
+ # from previous cells in a real execution environment.
6
+ # For this cell's context, we ensure they are declared global.
7
+ global cl
8
+ global explore_reels_list
9
+ global sentiment_analyzer_instance
10
+ global content_classifier_pipeline
11
+
12
+ # Initialize sentiment analyzer if not already done (can be done here or lazily in analyze_reels_gradio)
13
+ # Doing it here ensures the model is loaded when this cell runs, potentially reducing latency on first analyze click.
14
+ try:
15
+ sentiment_analyzer_instance = ReelSentimentAnalyzer()
16
+ print("Sentiment Analyzer initialized.")
17
+ # Optional: Train Hindi model if needed and data is available
18
+ # sample_train_data = [...] # Define your training data
19
+ # sentiment_analyzer_instance.train_hindi_model(sample_train_data)
20
+ except Exception as e:
21
+ print(f"Error initializing Sentiment Analyzer globally: {e}")
22
+ sentiment_analyzer_instance = None
23
+
24
+
25
+ # Initialize content classifier pipeline if not already done (can be done here or lazily)
26
+ try:
27
+ print("Initializing Content Classifier Pipeline globally...")
28
+ content_classifier_pipeline = pipeline(
29
+ "zero-shot-classification",
30
+ model="facebook/bart-large-mnli",
31
+ device=0 if torch.cuda.is_available() else -1 # Use GPU if available
32
+ )
33
+ print("Content Classifier Pipeline Initialized.")
34
+ except Exception as e:
35
+ print(f"Error initializing Content Classifier globally: {e}")
36
+ content_classifier_pipeline = None
37
+
38
+
39
+ def analyze_reels_gradio(max_to_analyze):
40
+ """Gradio-compatible function to analyze fetched reels and generate plots."""
41
+ global explore_reels_list
42
+ global sentiment_analyzer_instance
43
+ global content_classifier_pipeline
44
+
45
+ if not explore_reels_list:
46
+ # Return None for plots if no reels
47
+ return "Error: No reels fetched yet. Please fetch reels first.", None, None
48
+
49
+ # Ensure max_to_analyze does not exceed the number of fetched reels
50
+ num_reels_to_process = min(max_to_analyze, len(explore_reels_list))
51
+ reels_to_analyze = explore_reels_list[:num_reels_to_process]
52
+
53
+ if not reels_to_analyze:
54
+ return "Error: No reels available to analyze.", None, None
55
+
56
+
57
+ # Check if analyzers are initialized
58
+ if sentiment_analyzer_instance is None:
59
+ return "Error: Sentiment Analyzer not initialized.", None, None
60
+ if content_classifier_pipeline is None:
61
+ return "Error: Content Classifier not initialized.", None, None
62
+
63
+
64
+ analysis_status_messages = []
65
+ sentiment_plot_figure = None # Changed to figure
66
+ content_plot_figure = None # Changed to figure
67
+
68
+ # Perform Sentiment Analysis
69
+ try:
70
+ analysis_status_messages.append(f"Starting Sentiment Analysis for {len(reels_to_analyze)} reels...")
71
+ sentiment_results, detailed_sentiment_results = sentiment_analyzer_instance.analyze_reels(
72
+ reels_to_analyze,
73
+ max_to_analyze=len(reels_to_analyze) # Pass the actual number being processed
74
+ )
75
+ # Call the updated plotting function that returns a figure
76
+ sentiment_plot_figure = plot_sentiment_pie(sentiment_results, title=f"Sentiment of {len(reels_to_analyze)} Instagram Reels")
77
+ analysis_status_messages.append("Sentiment Analysis Complete.")
78
+ except Exception as e:
79
+ analysis_status_messages.append(f"Error during Sentiment Analysis: {e}")
80
+ sentiment_plot_figure = None # Ensure plot is None on error
81
+
82
+
83
+ # Perform Content Categorization
84
+ try:
85
+ analysis_status_messages.append(f"Starting Content Categorization for {len(reels_to_analyze)} reels...")
86
+ category_counts = Counter()
87
+ # Re-implement content analysis slightly to fit this flow using the global pipeline
88
+ print(f"\n⏳ Analyzing content for {len(reels_to_analyze)} reels...")
89
+ for i, reel in enumerate(reels_to_analyze, 1):
90
+ caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
91
+ # Use the global classifier pipeline
92
+ category, details = classify_reel_content(caption)
93
+ category_counts[category] += 1
94
+
95
+ print("\n✅ Content Analysis complete!")
96
+ print("\n📊 Category Counts:")
97
+ for category, count in category_counts.most_common():
98
+ print(f"- {category.replace('_', ' ').title()}: {count}")
99
+
100
+ # Call the updated plotting function that returns a figure
101
+ content_plot_figure = plot_category_distribution(category_counts)
102
+ analysis_status_messages.append("Content Categorization Complete.")
103
+
104
+ except Exception as e:
105
+ analysis_status_messages.append(f"Error during Content Analysis: {e}")
106
+ content_plot_figure = None # Ensure plot is None on error
107
+
108
+
109
+ final_status_message = "\n".join(analysis_status_messages)
110
+ # Return the figure objects
111
+ return final_status_message, sentiment_plot_figure, content_plot_figure
112
+
113
+
114
+ # Re-define plot functions to return bytes (if not already done in a previous cell)
115
+ # Assuming they were defined in the previous subtask's code block.
116
+ # If not, they would need to be included here.
117
+
118
+ # --- Gradio Blocks Interface ---
119
+ with gr.Blocks() as demo:
120
+ gr.Markdown("# Instagram Reels Analysis")
121
+ with gr.Row():
122
+ username_input = gr.Textbox(label="Instagram Username")
123
+ login_button = gr.Button("Login")
124
+ login_status_output = gr.Label(label="Login Status")
125
+
126
+ with gr.Row():
127
+ fetch_button = gr.Button("Fetch Reels")
128
+ fetch_status_output = gr.Label(label="Fetch Status")
129
+
130
+ with gr.Row():
131
+ max_reels_input = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Reels to Analyze")
132
+ analyze_button = gr.Button("Analyze Reels")
133
+
134
+ analyze_status_output = gr.Label(label="Analysis Status")
135
+
136
+ with gr.Row():
137
+ # Sentiment Analysis Outputs
138
+ with gr.Column():
139
+ gr.Markdown("## Sentiment Analysis")
140
+ sentiment_plot_output = gr.Plot(label="Sentiment Distribution")
141
+
142
+ # Content Analysis Outputs
143
+ with gr.Column():
144
+ gr.Markdown("## Content Analysis")
145
+ content_plot_output = gr.Plot(label="Content Distribution")
146
+
147
+
148
+ # Link login and fetch buttons (assuming login_gradio and fetch_reels_gradio are defined)
149
+ # Redefine login_gradio and fetch_reels_gradio here within the Blocks context
150
+ # to ensure they are linked correctly, even though they were defined above.
151
+ # This is a common pattern in Gradio Blocks.
152
+
153
+ def login_gradio_blocks(username):
154
+ """Gradio-compatible login function for Blocks."""
155
+ global cl
156
+ try:
157
+ PASSWORD = userdata.get('password')
158
+ except Exception as e:
159
+ return f"Error accessing password secret: {e}"
160
+
161
+
162
+ if not PASSWORD:
163
+ return "Error: Instagram password not found in Colab secrets."
164
+
165
+ cl = Client()
166
+
167
+ try:
168
+ cl.login(username, PASSWORD)
169
+ return f"Successfully logged in as {username}"
170
+ except Exception as e:
171
+ cl = None # Ensure cl is None on failure
172
+ return f"Error during login: {e}"
173
+
174
+ def fetch_reels_gradio_blocks():
175
+ """Gradio-compatible function to fetch explore reels for Blocks."""
176
+ global cl
177
+ global explore_reels_list
178
+
179
+ if cl is None:
180
+ explore_reels_list = [] # Ensure list is empty on failure
181
+ return "Error: Not logged in. Please log in first."
182
+
183
+ try:
184
+ # Fetch a limited number of reels for demonstration purposes
185
+ # You might want to make this number configurable later
186
+ fetched_reels = cl.explore_reels()[:100] # Fetch up to 100 for analysis
187
+ explore_reels_list = fetched_reels
188
+ if explore_reels_list:
189
+ return f"Successfully fetched {len(explore_reels_list)} explore reels."
190
+ else:
191
+ explore_reels_list = [] # Ensure it's an empty list
192
+ return "Fetched 0 explore reels."
193
+ except Exception as e:
194
+ explore_reels_list = [] # Ensure it's an empty list on error
195
+ return f"Error fetching explore reels: {e}"
196
+
197
+
198
+ login_button.click(
199
+ fn=login_gradio_blocks,
200
+ inputs=username_input,
201
+ outputs=login_status_output
202
+ )
203
+
204
+ fetch_button.click(
205
+ fn=fetch_reels_gradio_blocks,
206
+ inputs=None, # No direct inputs needed for fetching
207
+ outputs=fetch_status_output
208
+ )
209
+
210
+ # Link the Analyze button to the analysis function
211
+ analyze_button.click(
212
+ fn=analyze_reels_gradio,
213
+ inputs=max_reels_input, # Input is the slider value
214
+ outputs=[analyze_status_output, sentiment_plot_output, content_plot_output] # Outputs are status and the two plots
215
+ )
216
+
217
+ # The demo is now fully defined. It can be launched in the next step.
218
+ # demo.launch()