Spaces:
Sleeping
Sleeping
feat: implement simplified audio processing with enhanced TTS API integration
Browse files
src/processors/generate_simple_tts_audio.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Simplified TTS audio generation that uses the enhanced API endpoints."""
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import tempfile
|
5 |
+
import soundfile as sf
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
|
10 |
+
def generate_simple_tts_audio(text_input: str, audio_prompt_input=None, progress=None):
|
11 |
+
"""
|
12 |
+
Generate TTS audio using the enhanced API that handles chunking and concatenation server-side.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
text_input: The text to convert to speech (any length)
|
16 |
+
audio_prompt_input: Optional audio prompt for voice cloning
|
17 |
+
progress: Optional progress callback
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
Tuple of (sample_rate, audio_data)
|
21 |
+
"""
|
22 |
+
# Use the new full-text endpoint that handles everything server-side
|
23 |
+
FULL_TEXT_ENDPOINT = os.getenv("FULL_TEXT_TTS_ENDPOINT", "YOUR-MODAL-ENDPOINT-URL/generate_full_text_audio")
|
24 |
+
GENERATE_WITH_FILE_ENDPOINT = os.getenv("GENERATE_WITH_FILE_ENDPOINT", "YOUR-MODAL-ENDPOINT-URL/generate_with_file")
|
25 |
+
|
26 |
+
if not text_input or len(text_input.strip()) == 0:
|
27 |
+
raise gr.Error("Please enter some text to synthesize.")
|
28 |
+
|
29 |
+
if progress:
|
30 |
+
progress(0.1, desc="Preparing request for full-text processing...")
|
31 |
+
|
32 |
+
try:
|
33 |
+
if audio_prompt_input is None:
|
34 |
+
# Use the new full-text endpoint for enhanced processing
|
35 |
+
if progress:
|
36 |
+
progress(0.3, desc="Sending full text to enhanced TTS API...")
|
37 |
+
|
38 |
+
payload = {
|
39 |
+
"text": text_input,
|
40 |
+
"max_chunk_size": 800,
|
41 |
+
"silence_duration": 0.5,
|
42 |
+
"fade_duration": 0.1,
|
43 |
+
"overlap_sentences": 0
|
44 |
+
}
|
45 |
+
|
46 |
+
response = requests.post(
|
47 |
+
FULL_TEXT_ENDPOINT,
|
48 |
+
json=payload,
|
49 |
+
headers={"Content-Type": "application/json"},
|
50 |
+
timeout=300, # Longer timeout for full-text processing
|
51 |
+
stream=True
|
52 |
+
)
|
53 |
+
|
54 |
+
if response.status_code != 200:
|
55 |
+
raise gr.Error(f"API Error: {response.status_code} - {response.text}")
|
56 |
+
|
57 |
+
if progress:
|
58 |
+
progress(0.6, desc="Server processing text chunks in parallel...")
|
59 |
+
|
60 |
+
# Get content length if available for progress tracking
|
61 |
+
content_length = response.headers.get('content-length')
|
62 |
+
chunks_processed = response.headers.get('X-Chunks-Processed', 'unknown')
|
63 |
+
total_chars = response.headers.get('X-Total-Characters', len(text_input))
|
64 |
+
|
65 |
+
if progress:
|
66 |
+
progress(0.7, desc=f"Processing {chunks_processed} chunks ({total_chars} characters)...")
|
67 |
+
|
68 |
+
bytes_downloaded = 0
|
69 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
70 |
+
for chunk in response.iter_content(chunk_size=8192):
|
71 |
+
if chunk:
|
72 |
+
temp_file.write(chunk)
|
73 |
+
bytes_downloaded += len(chunk)
|
74 |
+
|
75 |
+
# Update progress based on bytes downloaded
|
76 |
+
if progress:
|
77 |
+
progress(0.7, desc=f"Downloading processed audio... ({bytes_downloaded // 1024}KB)")
|
78 |
+
|
79 |
+
temp_path = temp_file.name
|
80 |
+
|
81 |
+
if progress:
|
82 |
+
progress(0.9, desc="Loading final audio...")
|
83 |
+
|
84 |
+
audio_data, sample_rate = sf.read(temp_path)
|
85 |
+
os.unlink(temp_path)
|
86 |
+
|
87 |
+
if progress:
|
88 |
+
progress(1.0, desc=f"Complete! Processed {chunks_processed} chunks into final audio.")
|
89 |
+
|
90 |
+
return (sample_rate, audio_data)
|
91 |
+
|
92 |
+
else:
|
93 |
+
# For voice cloning, still use the original endpoint
|
94 |
+
if progress:
|
95 |
+
progress(0.3, desc="Preparing voice cloning request...")
|
96 |
+
|
97 |
+
files = {'text': (None, text_input)}
|
98 |
+
with open(audio_prompt_input, 'rb') as f:
|
99 |
+
audio_content = f.read()
|
100 |
+
files['voice_prompt'] = ('voice_prompt.wav', audio_content, 'audio/wav')
|
101 |
+
|
102 |
+
if progress:
|
103 |
+
progress(0.5, desc="Sending request with voice cloning...")
|
104 |
+
|
105 |
+
response = requests.post(
|
106 |
+
GENERATE_WITH_FILE_ENDPOINT,
|
107 |
+
files=files,
|
108 |
+
timeout=180,
|
109 |
+
stream=True
|
110 |
+
)
|
111 |
+
|
112 |
+
if response.status_code != 200:
|
113 |
+
raise gr.Error(f"API Error: {response.status_code} - {response.text}")
|
114 |
+
|
115 |
+
if progress:
|
116 |
+
progress(0.8, desc="Processing cloned voice...")
|
117 |
+
|
118 |
+
bytes_downloaded = 0
|
119 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
120 |
+
for chunk in response.iter_content(chunk_size=8192):
|
121 |
+
if chunk:
|
122 |
+
temp_file.write(chunk)
|
123 |
+
bytes_downloaded += len(chunk)
|
124 |
+
|
125 |
+
if progress:
|
126 |
+
progress(0.8, desc=f"Downloading cloned audio... ({bytes_downloaded // 1024}KB)")
|
127 |
+
|
128 |
+
temp_path = temp_file.name
|
129 |
+
|
130 |
+
audio_data, sample_rate = sf.read(temp_path)
|
131 |
+
os.unlink(temp_path)
|
132 |
+
|
133 |
+
if progress:
|
134 |
+
progress(1.0, desc="Voice cloning complete!")
|
135 |
+
|
136 |
+
return (sample_rate, audio_data)
|
137 |
+
|
138 |
+
except requests.exceptions.Timeout:
|
139 |
+
raise gr.Error("Request timed out. The API might be processing a large text. Please try again.")
|
140 |
+
except requests.exceptions.ConnectionError:
|
141 |
+
raise gr.Error("Unable to connect to the API. Please check if the endpoint URL is correct.")
|
142 |
+
except Exception as e:
|
143 |
+
raise gr.Error(f"Error generating audio: {str(e)}")
|
144 |
+
|
145 |
+
|
146 |
+
def get_api_processing_info(text: str) -> dict:
|
147 |
+
"""
|
148 |
+
Get processing information from the API without generating audio.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
text: The text to analyze
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
Dictionary with processing information
|
155 |
+
"""
|
156 |
+
try:
|
157 |
+
# This could be enhanced to call an API info endpoint
|
158 |
+
text_length = len(text.strip()) if text else 0
|
159 |
+
estimated_chunks = max(1, text_length // 800)
|
160 |
+
|
161 |
+
return {
|
162 |
+
"text_length": text_length,
|
163 |
+
"estimated_chunks": estimated_chunks,
|
164 |
+
"processing_mode": "server_side_parallel_gpu",
|
165 |
+
"benefits": [
|
166 |
+
"Server-side GPU acceleration",
|
167 |
+
"Parallel chunk processing",
|
168 |
+
"Automatic audio concatenation",
|
169 |
+
"Optimized for large texts",
|
170 |
+
"No client-side resource usage"
|
171 |
+
]
|
172 |
+
}
|
173 |
+
except Exception as e:
|
174 |
+
return {"error": f"Failed to analyze text: {str(e)}"}
|
src/processors/pdf_processor.py
CHANGED
@@ -34,24 +34,18 @@ class PDFProcessor:
|
|
34 |
explanations = self.extractor.generate_explanations(extracted_text)
|
35 |
|
36 |
# Show explanations immediately, update status for audio loading
|
37 |
-
yield extracted_text, gr.update(value="Generating audio..."), explanations, None, gr.update(visible=False)
|
38 |
-
# Step 3: Generate audio
|
39 |
try:
|
40 |
-
from .
|
41 |
|
42 |
-
# Create audio processor
|
43 |
-
audio_processor =
|
44 |
-
max_chunk_size=800,
|
45 |
-
max_workers=4,
|
46 |
-
silence_duration=0.5,
|
47 |
-
enable_parallel=True
|
48 |
-
)
|
49 |
|
50 |
# Generate progress callback for audio processing
|
51 |
def audio_progress(progress, desc=""):
|
52 |
yield extracted_text, gr.update(value=f"Generating audio: {desc}"), explanations, None, gr.update(visible=False)
|
53 |
|
54 |
-
# Generate audio using the
|
55 |
audio_result, _ = audio_processor.generate_audio(explanations, progress=audio_progress)
|
56 |
|
57 |
# Show everything, update status to complete
|
|
|
34 |
explanations = self.extractor.generate_explanations(extracted_text)
|
35 |
|
36 |
# Show explanations immediately, update status for audio loading
|
37 |
+
yield extracted_text, gr.update(value="Generating audio..."), explanations, None, gr.update(visible=False) # Step 3: Generate audio
|
|
|
38 |
try:
|
39 |
+
from .simple_audio_processor import SimpleAudioProcessor
|
40 |
|
41 |
+
# Create simplified audio processor
|
42 |
+
audio_processor = SimpleAudioProcessor()
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Generate progress callback for audio processing
|
45 |
def audio_progress(progress, desc=""):
|
46 |
yield extracted_text, gr.update(value=f"Generating audio: {desc}"), explanations, None, gr.update(visible=False)
|
47 |
|
48 |
+
# Generate audio using the simplified processor
|
49 |
audio_result, _ = audio_processor.generate_audio(explanations, progress=audio_progress)
|
50 |
|
51 |
# Show everything, update status to complete
|
src/processors/simple_audio_processor.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Simplified audio generation functionality that delegates complex processing to the TTS API."""
|
2 |
+
from typing import Tuple, Optional
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class SimpleAudioProcessor:
|
7 |
+
"""Simplified audio processor that uses the enhanced TTS API for complex processing."""
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
"""Initialize the simple audio processor."""
|
11 |
+
pass
|
12 |
+
|
13 |
+
def generate_audio(self, explanation_text: str, progress=None) -> Tuple[Tuple[int, np.ndarray], dict]:
|
14 |
+
"""
|
15 |
+
Generate TTS audio for explanations using the enhanced TTS API.
|
16 |
+
|
17 |
+
This method sends the full text to the TTS API which handles:
|
18 |
+
- Text chunking
|
19 |
+
- Parallel processing
|
20 |
+
- Audio concatenation
|
21 |
+
- All on the server side with GPU acceleration
|
22 |
+
|
23 |
+
Args:
|
24 |
+
explanation_text: The text to convert to audio
|
25 |
+
progress: Optional progress callback
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
Tuple of (audio_result, update_dict) where audio_result is (sample_rate, audio_data)
|
29 |
+
"""
|
30 |
+
if not explanation_text or explanation_text.strip() == "":
|
31 |
+
raise gr.Error("No explanations available to convert to audio. Please generate explanations first.")
|
32 |
+
|
33 |
+
try:
|
34 |
+
clean_text = explanation_text.strip()
|
35 |
+
|
36 |
+
if progress:
|
37 |
+
progress(0.1, desc="Sending text to TTS API for processing...")
|
38 |
+
|
39 |
+
# Import the simplified audio generation function
|
40 |
+
from .generate_simple_tts_audio import generate_simple_tts_audio
|
41 |
+
|
42 |
+
# Generate audio using the new simplified API call
|
43 |
+
audio_result = generate_simple_tts_audio(clean_text, progress=progress)
|
44 |
+
|
45 |
+
if progress:
|
46 |
+
progress(1.0, desc="Audio generation complete!")
|
47 |
+
|
48 |
+
return audio_result, gr.update(visible=True)
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
raise gr.Error(f"Error generating audio: {str(e)}")
|
52 |
+
|
53 |
+
def get_processing_info(self, text: str) -> dict:
|
54 |
+
"""Get basic information about the text to be processed."""
|
55 |
+
if not text or not text.strip():
|
56 |
+
return {"error": "No text provided"}
|
57 |
+
|
58 |
+
text_length = len(text.strip())
|
59 |
+
estimated_chunks = max(1, text_length // 800) # Rough estimate
|
60 |
+
estimated_time = text_length * 0.05 # Rough estimate: 0.05 seconds per character
|
61 |
+
|
62 |
+
return {
|
63 |
+
"processing_mode": "server_side_parallel",
|
64 |
+
"text_length": text_length,
|
65 |
+
"estimated_chunks": estimated_chunks,
|
66 |
+
"estimated_time_seconds": estimated_time,
|
67 |
+
"estimated_time_readable": f"{estimated_time:.1f} seconds" if estimated_time < 60 else f"{estimated_time/60:.1f} minutes",
|
68 |
+
"note": "Processing handled by TTS API with GPU acceleration"
|
69 |
+
}
|