Spaces:
Sleeping
Sleeping
api docs and code added
Browse files- api/README.md +61 -0
- api/__init__.py +22 -0
- api/audio_utils.py +62 -0
- api/config.py +23 -0
- api/models.py +27 -0
- api/tts_service.py +278 -0
- requirements.txt +1 -0
api/README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# API Package
|
2 |
+
|
3 |
+
This package contains the modular components of the Chatterbox TTS API.
|
4 |
+
|
5 |
+
## Structure
|
6 |
+
|
7 |
+
```
|
8 |
+
api/
|
9 |
+
├── __init__.py # Package initialization and exports
|
10 |
+
├── config.py # Modal app configuration and container image setup
|
11 |
+
├── models.py # Pydantic request/response models
|
12 |
+
├── audio_utils.py # Audio processing utilities and helper functions
|
13 |
+
├── tts_service.py # Main TTS service class with all API endpoints
|
14 |
+
└── README.md # This file
|
15 |
+
```
|
16 |
+
|
17 |
+
## Components
|
18 |
+
|
19 |
+
### config.py
|
20 |
+
|
21 |
+
- Modal app configuration
|
22 |
+
- Container image setup with required dependencies
|
23 |
+
- Centralized configuration management
|
24 |
+
|
25 |
+
### models.py
|
26 |
+
|
27 |
+
- `TTSRequest`: Request model for TTS generation
|
28 |
+
- `TTSResponse`: Response model for JSON endpoints
|
29 |
+
- `HealthResponse`: Response model for health checks
|
30 |
+
- All models include proper type hints and documentation
|
31 |
+
|
32 |
+
### audio_utils.py
|
33 |
+
|
34 |
+
- `AudioUtils`: Static utility class for audio operations
|
35 |
+
- Buffer management for audio data
|
36 |
+
- Temporary file handling with automatic cleanup
|
37 |
+
- Reusable audio processing functions
|
38 |
+
|
39 |
+
### tts_service.py
|
40 |
+
|
41 |
+
- `ChatterboxTTSService`: Main service class with all endpoints
|
42 |
+
- GPU-accelerated TTS model loading and inference
|
43 |
+
- Multiple API endpoints for different use cases
|
44 |
+
- Comprehensive error handling and validation
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
```python
|
49 |
+
from api import app, ChatterboxTTSService
|
50 |
+
|
51 |
+
# The app is automatically configured and ready to deploy
|
52 |
+
# The service class contains all the endpoints
|
53 |
+
```
|
54 |
+
|
55 |
+
## Benefits of Modular Architecture
|
56 |
+
|
57 |
+
1. **Separation of Concerns**: Each file has a specific responsibility
|
58 |
+
2. **Maintainability**: Easier to update and modify individual components
|
59 |
+
3. **Testability**: Components can be tested in isolation
|
60 |
+
4. **Reusability**: Components can be imported and used in other projects
|
61 |
+
5. **Readability**: Smaller files are easier to understand and navigate
|
api/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Chatterbox TTS API package.
|
4 |
+
|
5 |
+
This package provides a modular text-to-speech API using the Chatterbox TTS model
|
6 |
+
deployed on Modal with GPU acceleration.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from .config import app, image
|
10 |
+
from .models import TTSRequest, TTSResponse, HealthResponse
|
11 |
+
from .audio_utils import AudioUtils
|
12 |
+
from .tts_service import ChatterboxTTSService
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"app",
|
16 |
+
"image",
|
17 |
+
"TTSRequest",
|
18 |
+
"TTSResponse",
|
19 |
+
"HealthResponse",
|
20 |
+
"AudioUtils",
|
21 |
+
"ChatterboxTTSService"
|
22 |
+
]
|
api/audio_utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Audio processing utilities for TTS service.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import io
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
from .config import image
|
10 |
+
|
11 |
+
with image.imports():
|
12 |
+
import torchaudio as ta
|
13 |
+
|
14 |
+
|
15 |
+
class AudioUtils:
|
16 |
+
"""Helper class for audio processing operations."""
|
17 |
+
|
18 |
+
@staticmethod
|
19 |
+
def save_audio_to_buffer(wav_tensor, sample_rate: int) -> io.BytesIO:
|
20 |
+
"""
|
21 |
+
Save audio tensor to BytesIO buffer.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
wav_tensor: Audio tensor to save
|
25 |
+
sample_rate: Sample rate of the audio
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
BytesIO buffer containing WAV audio data
|
29 |
+
"""
|
30 |
+
buffer = io.BytesIO()
|
31 |
+
ta.save(buffer, wav_tensor, sample_rate, format="wav")
|
32 |
+
buffer.seek(0)
|
33 |
+
return buffer
|
34 |
+
|
35 |
+
@staticmethod
|
36 |
+
def save_temp_audio_file(audio_data: bytes) -> str:
|
37 |
+
"""
|
38 |
+
Save uploaded audio data to a temporary file.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
audio_data: Raw audio data bytes
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
Path to the temporary audio file
|
45 |
+
"""
|
46 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
47 |
+
temp_file.write(audio_data)
|
48 |
+
return temp_file.name
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def cleanup_temp_file(file_path: str) -> None:
|
52 |
+
"""
|
53 |
+
Clean up temporary audio file.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
file_path: Path to the temporary file to delete
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
if file_path and os.path.exists(file_path):
|
60 |
+
os.unlink(file_path)
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Warning: Failed to cleanup temp file {file_path}: {e}")
|
api/config.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Modal app configuration and container image setup.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import modal
|
7 |
+
|
8 |
+
# Define a container image with required dependencies
|
9 |
+
image = modal.Image.debian_slim(python_version="3.12").pip_install(
|
10 |
+
"chatterbox-tts==0.1.1",
|
11 |
+
"fastapi[standard]",
|
12 |
+
"pydantic",
|
13 |
+
"numpy",
|
14 |
+
"transformers>=4.45.0,<4.47.0", # Pin to avoid deprecation warnings
|
15 |
+
"torch>=2.0.0",
|
16 |
+
"torchaudio>=2.0.0"
|
17 |
+
).env({
|
18 |
+
# Suppress the specific transformers deprecation warning
|
19 |
+
"PYTHONWARNINGS": "ignore::FutureWarning:transformers"
|
20 |
+
})
|
21 |
+
|
22 |
+
# Create the Modal app
|
23 |
+
app = modal.App("chatterbox-api-example", image=image)
|
api/models.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Pydantic models for request/response validation and API documentation.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from typing import Optional
|
7 |
+
from pydantic import BaseModel
|
8 |
+
|
9 |
+
|
10 |
+
class TTSRequest(BaseModel):
|
11 |
+
"""Request model for TTS generation with optional voice cloning."""
|
12 |
+
text: str
|
13 |
+
voice_prompt_base64: Optional[str] = None # Base64 encoded audio file
|
14 |
+
|
15 |
+
|
16 |
+
class TTSResponse(BaseModel):
|
17 |
+
"""Response model for TTS generation with JSON output."""
|
18 |
+
success: bool
|
19 |
+
message: str
|
20 |
+
audio_base64: Optional[str] = None # Base64 encoded audio response
|
21 |
+
duration_seconds: Optional[float] = None
|
22 |
+
|
23 |
+
|
24 |
+
class HealthResponse(BaseModel):
|
25 |
+
"""Response model for health check endpoint."""
|
26 |
+
status: str
|
27 |
+
model_loaded: bool
|
api/tts_service.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Main TTS service class with all API endpoints.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
import warnings
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
import modal
|
11 |
+
from fastapi.responses import StreamingResponse, Response
|
12 |
+
from fastapi import HTTPException, File, UploadFile, Form
|
13 |
+
|
14 |
+
from .config import app, image
|
15 |
+
from .models import TTSRequest, TTSResponse, HealthResponse
|
16 |
+
from .audio_utils import AudioUtils
|
17 |
+
|
18 |
+
with image.imports():
|
19 |
+
from chatterbox.tts import ChatterboxTTS
|
20 |
+
# Suppress specific transformers deprecation warnings
|
21 |
+
warnings.filterwarnings("ignore", message=".*past_key_values.*", category=FutureWarning)
|
22 |
+
|
23 |
+
|
24 |
+
@app.cls(
|
25 |
+
gpu="a10g",
|
26 |
+
scaledown_window=60 * 5,
|
27 |
+
enable_memory_snapshot=True
|
28 |
+
)
|
29 |
+
@modal.concurrent(
|
30 |
+
max_inputs=10
|
31 |
+
)
|
32 |
+
class ChatterboxTTSService:
|
33 |
+
"""
|
34 |
+
Advanced text-to-speech service using Chatterbox TTS model.
|
35 |
+
|
36 |
+
Provides multiple endpoints for different use cases including
|
37 |
+
voice cloning, file uploads, and JSON responses.
|
38 |
+
"""
|
39 |
+
|
40 |
+
@modal.enter()
|
41 |
+
def load(self):
|
42 |
+
"""Load the Chatterbox TTS model on container startup."""
|
43 |
+
print("Loading Chatterbox TTS model...")
|
44 |
+
|
45 |
+
# Suppress transformers deprecation warnings
|
46 |
+
warnings.filterwarnings("ignore", message=".*past_key_values.*", category=FutureWarning)
|
47 |
+
warnings.filterwarnings("ignore", message=".*tuple of tuples.*", category=FutureWarning)
|
48 |
+
|
49 |
+
self.model = ChatterboxTTS.from_pretrained(device="cuda")
|
50 |
+
print(f"Model loaded successfully! Sample rate: {self.model.sr}")
|
51 |
+
|
52 |
+
def _validate_text_input(self, text: str) -> None:
|
53 |
+
"""Validate text input parameters."""
|
54 |
+
if not text or len(text.strip()) == 0:
|
55 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
56 |
+
|
57 |
+
def _process_voice_prompt(self, voice_prompt_base64: Optional[str]) -> Optional[str]:
|
58 |
+
"""Process base64 encoded voice prompt and return temp file path."""
|
59 |
+
if not voice_prompt_base64:
|
60 |
+
return None
|
61 |
+
|
62 |
+
try:
|
63 |
+
audio_data = base64.b64decode(voice_prompt_base64)
|
64 |
+
return AudioUtils.save_temp_audio_file(audio_data)
|
65 |
+
except Exception as e:
|
66 |
+
raise HTTPException(status_code=400, detail=f"Invalid voice prompt audio: {str(e)}")
|
67 |
+
|
68 |
+
def _generate_audio(self, text: str, audio_prompt_path: Optional[str] = None):
|
69 |
+
"""Generate audio with optional voice prompt."""
|
70 |
+
print(f"Generating audio for text: {text[:50]}...")
|
71 |
+
|
72 |
+
try:
|
73 |
+
if audio_prompt_path:
|
74 |
+
wav = self.model.generate(text, audio_prompt_path=audio_prompt_path)
|
75 |
+
AudioUtils.cleanup_temp_file(audio_prompt_path)
|
76 |
+
else:
|
77 |
+
wav = self.model.generate(text)
|
78 |
+
return wav
|
79 |
+
except Exception as e:
|
80 |
+
if audio_prompt_path:
|
81 |
+
AudioUtils.cleanup_temp_file(audio_prompt_path)
|
82 |
+
raise e
|
83 |
+
|
84 |
+
@modal.fastapi_endpoint(docs=True, method="GET")
|
85 |
+
def health(self) -> HealthResponse:
|
86 |
+
"""Health check endpoint to verify model status."""
|
87 |
+
return HealthResponse(
|
88 |
+
status="healthy",
|
89 |
+
model_loaded=hasattr(self, 'model') and self.model is not None
|
90 |
+
)
|
91 |
+
|
92 |
+
@modal.fastapi_endpoint(docs=True, method="POST")
|
93 |
+
def generate_audio(self, request: TTSRequest) -> StreamingResponse:
|
94 |
+
"""
|
95 |
+
Generate speech audio from text with optional voice prompt.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
request: TTSRequest containing text and optional voice prompt
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
StreamingResponse with generated audio as WAV file
|
102 |
+
"""
|
103 |
+
try:
|
104 |
+
self._validate_text_input(request.text)
|
105 |
+
audio_prompt_path = self._process_voice_prompt(request.voice_prompt_base64)
|
106 |
+
|
107 |
+
# Generate audio
|
108 |
+
wav = self._generate_audio(request.text, audio_prompt_path)
|
109 |
+
|
110 |
+
# Create audio buffer
|
111 |
+
buffer = AudioUtils.save_audio_to_buffer(wav, self.model.sr)
|
112 |
+
|
113 |
+
return StreamingResponse(
|
114 |
+
io.BytesIO(buffer.read()),
|
115 |
+
media_type="audio/wav",
|
116 |
+
headers={
|
117 |
+
"Content-Disposition": "attachment; filename=generated_speech.wav",
|
118 |
+
"X-Audio-Duration": str(len(wav[0]) / self.model.sr)
|
119 |
+
}
|
120 |
+
)
|
121 |
+
|
122 |
+
except HTTPException:
|
123 |
+
raise
|
124 |
+
except Exception as e:
|
125 |
+
print(f"Error generating audio: {str(e)}")
|
126 |
+
raise HTTPException(status_code=500, detail=f"Audio generation failed: {str(e)}")
|
127 |
+
|
128 |
+
@modal.fastapi_endpoint(docs=True, method="POST")
|
129 |
+
def generate_with_file(
|
130 |
+
self,
|
131 |
+
text: str = Form(..., description="Text to convert to speech"),
|
132 |
+
voice_prompt: Optional[UploadFile] = File(None, description="Optional voice prompt audio file")
|
133 |
+
) -> StreamingResponse:
|
134 |
+
"""
|
135 |
+
Generate speech audio from text with optional voice prompt file upload.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
text: Text to convert to speech
|
139 |
+
voice_prompt: Optional audio file for voice cloning
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
StreamingResponse with generated audio as WAV file
|
143 |
+
"""
|
144 |
+
try:
|
145 |
+
self._validate_text_input(text)
|
146 |
+
|
147 |
+
# Handle voice prompt file if provided
|
148 |
+
audio_prompt_path = None
|
149 |
+
if voice_prompt:
|
150 |
+
if voice_prompt.content_type not in ["audio/wav", "audio/mpeg", "audio/mp3"]:
|
151 |
+
raise HTTPException(
|
152 |
+
status_code=400,
|
153 |
+
detail="Voice prompt must be WAV, MP3, or MPEG audio file"
|
154 |
+
)
|
155 |
+
|
156 |
+
# Read and save the uploaded file
|
157 |
+
audio_data = voice_prompt.file.read()
|
158 |
+
audio_prompt_path = AudioUtils.save_temp_audio_file(audio_data)
|
159 |
+
|
160 |
+
# Generate audio
|
161 |
+
wav = self._generate_audio(text, audio_prompt_path)
|
162 |
+
|
163 |
+
# Create audio buffer
|
164 |
+
buffer = AudioUtils.save_audio_to_buffer(wav, self.model.sr)
|
165 |
+
|
166 |
+
return StreamingResponse(
|
167 |
+
io.BytesIO(buffer.read()),
|
168 |
+
media_type="audio/wav",
|
169 |
+
headers={
|
170 |
+
"Content-Disposition": "attachment; filename=generated_speech.wav",
|
171 |
+
"X-Audio-Duration": str(len(wav[0]) / self.model.sr)
|
172 |
+
}
|
173 |
+
)
|
174 |
+
|
175 |
+
except HTTPException:
|
176 |
+
raise
|
177 |
+
except Exception as e:
|
178 |
+
print(f"Error generating audio: {str(e)}")
|
179 |
+
raise HTTPException(status_code=500, detail=f"Audio generation failed: {str(e)}")
|
180 |
+
|
181 |
+
@modal.fastapi_endpoint(docs=True, method="POST")
|
182 |
+
def generate_json(self, request: TTSRequest) -> TTSResponse:
|
183 |
+
"""
|
184 |
+
Generate speech audio and return as JSON with base64 encoded audio.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
request: TTSRequest containing text and optional voice prompt
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
TTSResponse with base64 encoded audio data
|
191 |
+
"""
|
192 |
+
try:
|
193 |
+
self._validate_text_input(request.text)
|
194 |
+
audio_prompt_path = self._process_voice_prompt(request.voice_prompt_base64)
|
195 |
+
|
196 |
+
# Generate audio
|
197 |
+
wav = self._generate_audio(request.text, audio_prompt_path)
|
198 |
+
|
199 |
+
# Convert to base64
|
200 |
+
buffer = AudioUtils.save_audio_to_buffer(wav, self.model.sr)
|
201 |
+
audio_base64 = base64.b64encode(buffer.read()).decode('utf-8')
|
202 |
+
duration = len(wav[0]) / self.model.sr
|
203 |
+
|
204 |
+
return TTSResponse(
|
205 |
+
success=True,
|
206 |
+
message="Audio generated successfully",
|
207 |
+
audio_base64=audio_base64,
|
208 |
+
duration_seconds=duration
|
209 |
+
)
|
210 |
+
|
211 |
+
except HTTPException as http_exc:
|
212 |
+
return TTSResponse(success=False, message=str(http_exc.detail))
|
213 |
+
except Exception as e:
|
214 |
+
print(f"Error generating audio: {str(e)}")
|
215 |
+
return TTSResponse(success=False, message=f"Audio generation failed: {str(e)}")
|
216 |
+
|
217 |
+
@modal.fastapi_endpoint(docs=True, method="POST")
|
218 |
+
def generate(self, prompt: str):
|
219 |
+
"""
|
220 |
+
Legacy endpoint for backward compatibility.
|
221 |
+
Generate audio waveform from the input text.
|
222 |
+
"""
|
223 |
+
try:
|
224 |
+
# Generate audio waveform from the input text
|
225 |
+
wav = self.model.generate(prompt)
|
226 |
+
|
227 |
+
# Create audio buffer
|
228 |
+
buffer = AudioUtils.save_audio_to_buffer(wav, self.model.sr)
|
229 |
+
|
230 |
+
# Return the audio as a streaming response with appropriate MIME type.
|
231 |
+
return StreamingResponse(
|
232 |
+
io.BytesIO(buffer.read()),
|
233 |
+
media_type="audio/wav",
|
234 |
+
)
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error in legacy endpoint: {str(e)}")
|
237 |
+
raise HTTPException(status_code=500, detail=f"Audio generation failed: {str(e)}")
|
238 |
+
|
239 |
+
@modal.fastapi_endpoint(docs=True, method="POST")
|
240 |
+
def generate_audio_file(self, request: TTSRequest) -> Response:
|
241 |
+
"""
|
242 |
+
Generate speech audio from text with optional voice prompt and return as a complete file.
|
243 |
+
|
244 |
+
Unlike the streaming endpoint, this returns the entire file at once.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
request: TTSRequest containing text and optional voice prompt
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
Response with complete audio file data
|
251 |
+
"""
|
252 |
+
try:
|
253 |
+
self._validate_text_input(request.text)
|
254 |
+
audio_prompt_path = self._process_voice_prompt(request.voice_prompt_base64)
|
255 |
+
|
256 |
+
# Generate audio
|
257 |
+
wav = self._generate_audio(request.text, audio_prompt_path)
|
258 |
+
|
259 |
+
# Create audio buffer
|
260 |
+
buffer = AudioUtils.save_audio_to_buffer(wav, self.model.sr)
|
261 |
+
audio_data = buffer.read()
|
262 |
+
duration = len(wav[0]) / self.model.sr
|
263 |
+
|
264 |
+
# Return the complete audio file
|
265 |
+
return Response(
|
266 |
+
content=audio_data,
|
267 |
+
media_type="audio/wav",
|
268 |
+
headers={
|
269 |
+
"Content-Disposition": "attachment; filename=generated_speech.wav",
|
270 |
+
"X-Audio-Duration": str(duration)
|
271 |
+
}
|
272 |
+
)
|
273 |
+
|
274 |
+
except HTTPException:
|
275 |
+
raise
|
276 |
+
except Exception as e:
|
277 |
+
print(f"Error generating audio: {str(e)}")
|
278 |
+
raise HTTPException(status_code=500, detail=f"Audio generation failed: {str(e)}")
|
requirements.txt
CHANGED
@@ -24,6 +24,7 @@ Jinja2==3.1.6
|
|
24 |
markdown-it-py==3.0.0
|
25 |
mdurl==0.1.2
|
26 |
mistralai==1.8.1
|
|
|
27 |
numpy==2.2.6
|
28 |
orjson==3.10.18
|
29 |
packaging==25.0
|
|
|
24 |
markdown-it-py==3.0.0
|
25 |
mdurl==0.1.2
|
26 |
mistralai==1.8.1
|
27 |
+
modal==1.0.3
|
28 |
numpy==2.2.6
|
29 |
orjson==3.10.18
|
30 |
packaging==25.0
|