Sandipan Haldar
commited on
Commit
·
770544d
1
Parent(s):
8d8077a
feat: Replace general context with LinkedIn-specific context
Browse files- Update environment configuration to use TEMPERATURE_LINKEDIN and DEFAULT_TOKENS_LINKEDIN
- Replace general context with LinkedIn context in autocomplete engine
- Add LinkedIn-specialized system prompts focusing on professional networking
- Update UI to show 'LinkedIn Content' option instead of 'General Text'
- Modify prompt editor to include LinkedIn-specific templates
- Update examples and documentation to reflect LinkedIn context
- Change default context from 'general' to 'linkedin' throughout codebase
- Update README.md to document LinkedIn context type
This change transforms the application from a general text completion tool
to a LinkedIn-focused professional content creation assistant.
- .env.example +7 -7
- README.md +1 -1
- app.py +28 -27
- config/settings.py +8 -8
- settings.py +8 -8
- src/autocomplete.py +12 -11
- src/utils.py +145 -111
.env.example
CHANGED
@@ -27,23 +27,23 @@ RATE_LIMIT_REQUESTS_PER_MINUTE=60
|
|
27 |
RATE_LIMIT_ENABLED=true
|
28 |
|
29 |
# Model Configuration
|
30 |
-
OPENAI_MODEL=gpt-
|
31 |
ANTHROPIC_MODEL=claude-3-haiku-20240307
|
32 |
|
33 |
# Temperature settings for different contexts (0.0 to 2.0)
|
34 |
TEMPERATURE_EMAIL=0.6
|
35 |
TEMPERATURE_CREATIVE=0.8
|
36 |
-
|
37 |
|
38 |
# Default token limits for different contexts
|
39 |
-
DEFAULT_TOKENS_EMAIL=
|
40 |
-
DEFAULT_TOKENS_CREATIVE=
|
41 |
-
|
42 |
|
43 |
# UI Configuration
|
44 |
UI_THEME=soft
|
45 |
-
UI_TITLE=🚀 Smart Auto-Complete
|
46 |
-
UI_DESCRIPTION=Intelligent text completion powered by AI
|
47 |
|
48 |
# Server Configuration
|
49 |
SERVER_HOST=0.0.0.0
|
|
|
27 |
RATE_LIMIT_ENABLED=true
|
28 |
|
29 |
# Model Configuration
|
30 |
+
OPENAI_MODEL=gpt-4.1-mini
|
31 |
ANTHROPIC_MODEL=claude-3-haiku-20240307
|
32 |
|
33 |
# Temperature settings for different contexts (0.0 to 2.0)
|
34 |
TEMPERATURE_EMAIL=0.6
|
35 |
TEMPERATURE_CREATIVE=0.8
|
36 |
+
TEMPERATURE_LINKEDIN=0.7
|
37 |
|
38 |
# Default token limits for different contexts
|
39 |
+
DEFAULT_TOKENS_EMAIL=250
|
40 |
+
DEFAULT_TOKENS_CREATIVE=500
|
41 |
+
DEFAULT_TOKENS_LINKEDIN=500
|
42 |
|
43 |
# UI Configuration
|
44 |
UI_THEME=soft
|
45 |
+
UI_TITLE=🚀 LinkedIn Smart Auto-Complete
|
46 |
+
UI_DESCRIPTION=Intelligent LinkedIn text completion powered by AI
|
47 |
|
48 |
# Server Configuration
|
49 |
SERVER_HOST=0.0.0.0
|
README.md
CHANGED
@@ -139,7 +139,7 @@ suggestions = autocomplete.get_suggestions(
|
|
139 |
|
140 |
- `email`: Professional email writing
|
141 |
- `creative`: Creative writing and storytelling
|
142 |
-
- `
|
143 |
|
144 |
## 🧪 Testing
|
145 |
|
|
|
139 |
|
140 |
- `email`: Professional email writing
|
141 |
- `creative`: Creative writing and storytelling
|
142 |
+
- `linkedin`: LinkedIn professional content and networking
|
143 |
|
144 |
## 🧪 Testing
|
145 |
|
app.py
CHANGED
@@ -6,12 +6,12 @@ A context-aware text completion tool built with Gradio
|
|
6 |
|
7 |
from typing import List, Tuple
|
8 |
|
|
|
|
|
9 |
from config.settings import AppSettings
|
10 |
from src.autocomplete import SmartAutoComplete
|
11 |
from src.utils import setup_logging
|
12 |
|
13 |
-
import gradio as gr
|
14 |
-
|
15 |
# Initialize logging
|
16 |
logger = setup_logging()
|
17 |
|
@@ -184,9 +184,9 @@ def create_interface():
|
|
184 |
choices=[
|
185 |
("📧 Email Writing", "email"),
|
186 |
("✍️ Creative Writing", "creative"),
|
187 |
-
("
|
188 |
],
|
189 |
-
value="
|
190 |
label="Select Context",
|
191 |
elem_classes=["context-selector"],
|
192 |
)
|
@@ -274,24 +274,25 @@ def create_interface():
|
|
274 |
placeholder="Enter the user message template...",
|
275 |
)
|
276 |
|
277 |
-
with gr.Tab("
|
278 |
-
|
279 |
label="System Prompt",
|
280 |
-
value="""You are a
|
281 |
-
|
282 |
-
-
|
283 |
-
-
|
284 |
-
-
|
285 |
-
-
|
|
|
286 |
|
287 |
IMPORTANT: Generate a completion that is approximately {max_tokens} tokens long.
|
288 |
Adjust your response length accordingly - shorter for fewer tokens, longer for more tokens.""",
|
289 |
lines=8,
|
290 |
-
placeholder="Enter the system prompt for
|
291 |
)
|
292 |
-
|
293 |
label="User Message Template",
|
294 |
-
value="Complete this
|
295 |
lines=3,
|
296 |
placeholder="Enter the user message template...",
|
297 |
)
|
@@ -330,9 +331,9 @@ def create_interface():
|
|
330 |
"creative",
|
331 |
],
|
332 |
[
|
333 |
-
"
|
334 |
-
"
|
335 |
-
"
|
336 |
],
|
337 |
],
|
338 |
inputs=[context_input, text_input, context_selector],
|
@@ -349,8 +350,8 @@ def create_interface():
|
|
349 |
email_user,
|
350 |
creative_sys,
|
351 |
creative_user,
|
352 |
-
|
353 |
-
|
354 |
):
|
355 |
"""Update suggestions based on input with custom prompts"""
|
356 |
logger.info(
|
@@ -370,9 +371,9 @@ def create_interface():
|
|
370 |
"user_template": creative_user,
|
371 |
"temperature": 0.8,
|
372 |
},
|
373 |
-
"
|
374 |
-
"system_prompt":
|
375 |
-
"user_template":
|
376 |
"temperature": 0.7,
|
377 |
},
|
378 |
}
|
@@ -405,8 +406,8 @@ def create_interface():
|
|
405 |
email_user_template,
|
406 |
creative_system_prompt,
|
407 |
creative_user_template,
|
408 |
-
|
409 |
-
|
410 |
],
|
411 |
outputs=[status_display, copy_textbox],
|
412 |
)
|
@@ -416,7 +417,7 @@ def create_interface():
|
|
416 |
---
|
417 |
|
418 |
### 🎮 How to Use:
|
419 |
-
1. **Select your context** (Email, Creative, or
|
420 |
2. **Add context information** (optional) - background info, references, or previous context
|
421 |
3. **Enter your text** in the main text area
|
422 |
4. **Adjust output length** (50-500 tokens) in settings
|
@@ -428,7 +429,7 @@ def create_interface():
|
|
428 |
- **Context Window**: Add background info, previous conversations, or references to improve suggestions
|
429 |
- **Email**: Try starting with "Dear..." or "I hope..." + add meeting context
|
430 |
- **Creative**: Start with "Once upon a time..." + add story background
|
431 |
-
- **
|
432 |
- **Output Length**: Adjust the token slider for longer or shorter completions
|
433 |
- **Custom Prompts**: Edit the AI prompts to customize behavior for your specific needs
|
434 |
|
|
|
6 |
|
7 |
from typing import List, Tuple
|
8 |
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
from config.settings import AppSettings
|
12 |
from src.autocomplete import SmartAutoComplete
|
13 |
from src.utils import setup_logging
|
14 |
|
|
|
|
|
15 |
# Initialize logging
|
16 |
logger = setup_logging()
|
17 |
|
|
|
184 |
choices=[
|
185 |
("📧 Email Writing", "email"),
|
186 |
("✍️ Creative Writing", "creative"),
|
187 |
+
("💼 LinkedIn Content", "linkedin"),
|
188 |
],
|
189 |
+
value="linkedin",
|
190 |
label="Select Context",
|
191 |
elem_classes=["context-selector"],
|
192 |
)
|
|
|
274 |
placeholder="Enter the user message template...",
|
275 |
)
|
276 |
|
277 |
+
with gr.Tab("💼 LinkedIn Context"):
|
278 |
+
linkedin_system_prompt = gr.Textbox(
|
279 |
label="System Prompt",
|
280 |
+
value="""You are a LinkedIn writing assistant specialized in professional networking content. Generate engaging,
|
281 |
+
professional LinkedIn-appropriate text completions. Focus on:
|
282 |
+
- Professional networking tone
|
283 |
+
- Industry-relevant language
|
284 |
+
- Engaging and authentic voice
|
285 |
+
- LinkedIn best practices (hashtags, mentions, professional insights)
|
286 |
+
- Career development and business communication
|
287 |
|
288 |
IMPORTANT: Generate a completion that is approximately {max_tokens} tokens long.
|
289 |
Adjust your response length accordingly - shorter for fewer tokens, longer for more tokens.""",
|
290 |
lines=8,
|
291 |
+
placeholder="Enter the system prompt for LinkedIn context...",
|
292 |
)
|
293 |
+
linkedin_user_template = gr.Textbox(
|
294 |
label="User Message Template",
|
295 |
+
value="Complete this LinkedIn post/content naturally and professionally with approximately {max_tokens} tokens: {text}",
|
296 |
lines=3,
|
297 |
placeholder="Enter the user message template...",
|
298 |
)
|
|
|
331 |
"creative",
|
332 |
],
|
333 |
[
|
334 |
+
"Professional networking and career development",
|
335 |
+
"Excited to share my thoughts on the future of AI in our industry",
|
336 |
+
"linkedin",
|
337 |
],
|
338 |
],
|
339 |
inputs=[context_input, text_input, context_selector],
|
|
|
350 |
email_user,
|
351 |
creative_sys,
|
352 |
creative_user,
|
353 |
+
linkedin_sys,
|
354 |
+
linkedin_user,
|
355 |
):
|
356 |
"""Update suggestions based on input with custom prompts"""
|
357 |
logger.info(
|
|
|
371 |
"user_template": creative_user,
|
372 |
"temperature": 0.8,
|
373 |
},
|
374 |
+
"linkedin": {
|
375 |
+
"system_prompt": linkedin_sys,
|
376 |
+
"user_template": linkedin_user,
|
377 |
"temperature": 0.7,
|
378 |
},
|
379 |
}
|
|
|
406 |
email_user_template,
|
407 |
creative_system_prompt,
|
408 |
creative_user_template,
|
409 |
+
linkedin_system_prompt,
|
410 |
+
linkedin_user_template,
|
411 |
],
|
412 |
outputs=[status_display, copy_textbox],
|
413 |
)
|
|
|
417 |
---
|
418 |
|
419 |
### 🎮 How to Use:
|
420 |
+
1. **Select your context** (Email, Creative, or LinkedIn)
|
421 |
2. **Add context information** (optional) - background info, references, or previous context
|
422 |
3. **Enter your text** in the main text area
|
423 |
4. **Adjust output length** (50-500 tokens) in settings
|
|
|
429 |
- **Context Window**: Add background info, previous conversations, or references to improve suggestions
|
430 |
- **Email**: Try starting with "Dear..." or "I hope..." + add meeting context
|
431 |
- **Creative**: Start with "Once upon a time..." + add story background
|
432 |
+
- **LinkedIn**: Perfect for professional posts, career updates, industry insights + add professional context
|
433 |
- **Output Length**: Adjust the token slider for longer or shorter completions
|
434 |
- **Custom Prompts**: Edit the AI prompts to customize behavior for your specific needs
|
435 |
|
config/settings.py
CHANGED
@@ -60,12 +60,12 @@ class AppSettings:
|
|
60 |
# Temperature settings for different contexts
|
61 |
self.TEMPERATURE_EMAIL = float(os.getenv("TEMPERATURE_EMAIL", "0.6"))
|
62 |
self.TEMPERATURE_CREATIVE = float(os.getenv("TEMPERATURE_CREATIVE", "0.8"))
|
63 |
-
self.
|
64 |
|
65 |
# Default token limits for different contexts
|
66 |
self.DEFAULT_TOKENS_EMAIL = int(os.getenv("DEFAULT_TOKENS_EMAIL", "200"))
|
67 |
self.DEFAULT_TOKENS_CREATIVE = int(os.getenv("DEFAULT_TOKENS_CREATIVE", "250"))
|
68 |
-
self.
|
69 |
|
70 |
# UI Configuration
|
71 |
self.UI_THEME = os.getenv("UI_THEME", "soft")
|
@@ -135,7 +135,7 @@ class AppSettings:
|
|
135 |
for temp_attr in [
|
136 |
"TEMPERATURE_EMAIL",
|
137 |
"TEMPERATURE_CREATIVE",
|
138 |
-
"
|
139 |
]:
|
140 |
temp_value = getattr(self, temp_attr)
|
141 |
if not (0.0 <= temp_value <= 2.0):
|
@@ -175,7 +175,7 @@ class AppSettings:
|
|
175 |
Get configuration for a specific context
|
176 |
|
177 |
Args:
|
178 |
-
context: Context name (email, code, creative,
|
179 |
|
180 |
Returns:
|
181 |
Dictionary with context-specific configuration
|
@@ -191,14 +191,14 @@ class AppSettings:
|
|
191 |
"default_tokens": self.DEFAULT_TOKENS_CREATIVE,
|
192 |
"model_preference": "anthropic", # Often better for creative content
|
193 |
},
|
194 |
-
"
|
195 |
-
"temperature": self.
|
196 |
-
"default_tokens": self.
|
197 |
"model_preference": self.DEFAULT_PROVIDER,
|
198 |
},
|
199 |
}
|
200 |
|
201 |
-
return context_configs.get(context, context_configs["
|
202 |
|
203 |
def get_model_for_provider(self, provider: str) -> str:
|
204 |
"""
|
|
|
60 |
# Temperature settings for different contexts
|
61 |
self.TEMPERATURE_EMAIL = float(os.getenv("TEMPERATURE_EMAIL", "0.6"))
|
62 |
self.TEMPERATURE_CREATIVE = float(os.getenv("TEMPERATURE_CREATIVE", "0.8"))
|
63 |
+
self.TEMPERATURE_LINKEDIN = float(os.getenv("TEMPERATURE_LINKEDIN", "0.7"))
|
64 |
|
65 |
# Default token limits for different contexts
|
66 |
self.DEFAULT_TOKENS_EMAIL = int(os.getenv("DEFAULT_TOKENS_EMAIL", "200"))
|
67 |
self.DEFAULT_TOKENS_CREATIVE = int(os.getenv("DEFAULT_TOKENS_CREATIVE", "250"))
|
68 |
+
self.DEFAULT_TOKENS_LINKEDIN = int(os.getenv("DEFAULT_TOKENS_LINKEDIN", "200"))
|
69 |
|
70 |
# UI Configuration
|
71 |
self.UI_THEME = os.getenv("UI_THEME", "soft")
|
|
|
135 |
for temp_attr in [
|
136 |
"TEMPERATURE_EMAIL",
|
137 |
"TEMPERATURE_CREATIVE",
|
138 |
+
"TEMPERATURE_LINKEDIN",
|
139 |
]:
|
140 |
temp_value = getattr(self, temp_attr)
|
141 |
if not (0.0 <= temp_value <= 2.0):
|
|
|
175 |
Get configuration for a specific context
|
176 |
|
177 |
Args:
|
178 |
+
context: Context name (email, code, creative, linkedin)
|
179 |
|
180 |
Returns:
|
181 |
Dictionary with context-specific configuration
|
|
|
191 |
"default_tokens": self.DEFAULT_TOKENS_CREATIVE,
|
192 |
"model_preference": "anthropic", # Often better for creative content
|
193 |
},
|
194 |
+
"linkedin": {
|
195 |
+
"temperature": self.TEMPERATURE_LINKEDIN,
|
196 |
+
"default_tokens": self.DEFAULT_TOKENS_LINKEDIN,
|
197 |
"model_preference": self.DEFAULT_PROVIDER,
|
198 |
},
|
199 |
}
|
200 |
|
201 |
+
return context_configs.get(context, context_configs["linkedin"])
|
202 |
|
203 |
def get_model_for_provider(self, provider: str) -> str:
|
204 |
"""
|
settings.py
CHANGED
@@ -60,12 +60,12 @@ class AppSettings:
|
|
60 |
# Temperature settings for different contexts
|
61 |
self.TEMPERATURE_EMAIL = float(os.getenv("TEMPERATURE_EMAIL", "0.6"))
|
62 |
self.TEMPERATURE_CREATIVE = float(os.getenv("TEMPERATURE_CREATIVE", "0.8"))
|
63 |
-
self.
|
64 |
|
65 |
# Default token limits for different contexts
|
66 |
self.DEFAULT_TOKENS_EMAIL = int(os.getenv("DEFAULT_TOKENS_EMAIL", "200"))
|
67 |
self.DEFAULT_TOKENS_CREATIVE = int(os.getenv("DEFAULT_TOKENS_CREATIVE", "250"))
|
68 |
-
self.
|
69 |
|
70 |
# UI Configuration
|
71 |
self.UI_THEME = os.getenv("UI_THEME", "soft")
|
@@ -135,7 +135,7 @@ class AppSettings:
|
|
135 |
for temp_attr in [
|
136 |
"TEMPERATURE_EMAIL",
|
137 |
"TEMPERATURE_CREATIVE",
|
138 |
-
"
|
139 |
]:
|
140 |
temp_value = getattr(self, temp_attr)
|
141 |
if not (0.0 <= temp_value <= 2.0):
|
@@ -175,7 +175,7 @@ class AppSettings:
|
|
175 |
Get configuration for a specific context
|
176 |
|
177 |
Args:
|
178 |
-
context: Context name (email, code, creative,
|
179 |
|
180 |
Returns:
|
181 |
Dictionary with context-specific configuration
|
@@ -191,14 +191,14 @@ class AppSettings:
|
|
191 |
"default_tokens": self.DEFAULT_TOKENS_CREATIVE,
|
192 |
"model_preference": "anthropic", # Often better for creative content
|
193 |
},
|
194 |
-
"
|
195 |
-
"temperature": self.
|
196 |
-
"default_tokens": self.
|
197 |
"model_preference": self.DEFAULT_PROVIDER,
|
198 |
},
|
199 |
}
|
200 |
|
201 |
-
return context_configs.get(context, context_configs["
|
202 |
|
203 |
def get_model_for_provider(self, provider: str) -> str:
|
204 |
"""
|
|
|
60 |
# Temperature settings for different contexts
|
61 |
self.TEMPERATURE_EMAIL = float(os.getenv("TEMPERATURE_EMAIL", "0.6"))
|
62 |
self.TEMPERATURE_CREATIVE = float(os.getenv("TEMPERATURE_CREATIVE", "0.8"))
|
63 |
+
self.TEMPERATURE_LINKEDIN = float(os.getenv("TEMPERATURE_LINKEDIN", "0.7"))
|
64 |
|
65 |
# Default token limits for different contexts
|
66 |
self.DEFAULT_TOKENS_EMAIL = int(os.getenv("DEFAULT_TOKENS_EMAIL", "200"))
|
67 |
self.DEFAULT_TOKENS_CREATIVE = int(os.getenv("DEFAULT_TOKENS_CREATIVE", "250"))
|
68 |
+
self.DEFAULT_TOKENS_LINKEDIN = int(os.getenv("DEFAULT_TOKENS_LINKEDIN", "200"))
|
69 |
|
70 |
# UI Configuration
|
71 |
self.UI_THEME = os.getenv("UI_THEME", "soft")
|
|
|
135 |
for temp_attr in [
|
136 |
"TEMPERATURE_EMAIL",
|
137 |
"TEMPERATURE_CREATIVE",
|
138 |
+
"TEMPERATURE_LINKEDIN",
|
139 |
]:
|
140 |
temp_value = getattr(self, temp_attr)
|
141 |
if not (0.0 <= temp_value <= 2.0):
|
|
|
175 |
Get configuration for a specific context
|
176 |
|
177 |
Args:
|
178 |
+
context: Context name (email, code, creative, linkedin)
|
179 |
|
180 |
Returns:
|
181 |
Dictionary with context-specific configuration
|
|
|
191 |
"default_tokens": self.DEFAULT_TOKENS_CREATIVE,
|
192 |
"model_preference": "anthropic", # Often better for creative content
|
193 |
},
|
194 |
+
"linkedin": {
|
195 |
+
"temperature": self.TEMPERATURE_LINKEDIN,
|
196 |
+
"default_tokens": self.DEFAULT_TOKENS_LINKEDIN,
|
197 |
"model_preference": self.DEFAULT_PROVIDER,
|
198 |
},
|
199 |
}
|
200 |
|
201 |
+
return context_configs.get(context, context_configs["linkedin"])
|
202 |
|
203 |
def get_model_for_provider(self, provider: str) -> str:
|
204 |
"""
|
src/autocomplete.py
CHANGED
@@ -57,17 +57,18 @@ class SmartAutoComplete:
|
|
57 |
"user_template": "Continue this creative writing piece naturally with approximately {max_tokens} tokens: {text}",
|
58 |
"temperature": 0.8,
|
59 |
},
|
60 |
-
"
|
61 |
-
"system_prompt": """You are a
|
62 |
-
|
63 |
-
-
|
64 |
-
-
|
65 |
-
-
|
66 |
-
-
|
|
|
67 |
|
68 |
IMPORTANT: Generate a completion that is approximately {max_tokens} tokens long.
|
69 |
Adjust your response length accordingly - shorter for fewer tokens, longer for more tokens.""",
|
70 |
-
"user_template": "Complete this
|
71 |
"temperature": 0.7,
|
72 |
},
|
73 |
}
|
@@ -84,7 +85,7 @@ class SmartAutoComplete:
|
|
84 |
def get_suggestions(
|
85 |
self,
|
86 |
text: str,
|
87 |
-
context: str = "
|
88 |
max_tokens: int = 150,
|
89 |
user_context: str = "",
|
90 |
) -> List[str]:
|
@@ -93,7 +94,7 @@ class SmartAutoComplete:
|
|
93 |
|
94 |
Args:
|
95 |
text: Input text to complete
|
96 |
-
context: Context type (email, creative,
|
97 |
max_tokens: Maximum tokens in the response
|
98 |
user_context: Additional context provided by the user
|
99 |
|
@@ -149,7 +150,7 @@ class SmartAutoComplete:
|
|
149 |
"""Get suggestions from the API client"""
|
150 |
try:
|
151 |
context_config = self.CONTEXT_PROMPTS.get(
|
152 |
-
request.context, self.CONTEXT_PROMPTS["
|
153 |
)
|
154 |
|
155 |
# Format system prompt with max_tokens and user context
|
|
|
57 |
"user_template": "Continue this creative writing piece naturally with approximately {max_tokens} tokens: {text}",
|
58 |
"temperature": 0.8,
|
59 |
},
|
60 |
+
"linkedin": {
|
61 |
+
"system_prompt": """You are a LinkedIn writing assistant specialized in professional networking content. Generate engaging,
|
62 |
+
professional LinkedIn-appropriate text completions. Focus on:
|
63 |
+
- Professional networking tone
|
64 |
+
- Industry-relevant language
|
65 |
+
- Engaging and authentic voice
|
66 |
+
- LinkedIn best practices (hashtags, mentions, professional insights)
|
67 |
+
- Career development and business communication
|
68 |
|
69 |
IMPORTANT: Generate a completion that is approximately {max_tokens} tokens long.
|
70 |
Adjust your response length accordingly - shorter for fewer tokens, longer for more tokens.""",
|
71 |
+
"user_template": "Complete this LinkedIn post/content naturally and professionally with approximately {max_tokens} tokens: {text}",
|
72 |
"temperature": 0.7,
|
73 |
},
|
74 |
}
|
|
|
85 |
def get_suggestions(
|
86 |
self,
|
87 |
text: str,
|
88 |
+
context: str = "linkedin",
|
89 |
max_tokens: int = 150,
|
90 |
user_context: str = "",
|
91 |
) -> List[str]:
|
|
|
94 |
|
95 |
Args:
|
96 |
text: Input text to complete
|
97 |
+
context: Context type (email, creative, linkedin)
|
98 |
max_tokens: Maximum tokens in the response
|
99 |
user_context: Additional context provided by the user
|
100 |
|
|
|
150 |
"""Get suggestions from the API client"""
|
151 |
try:
|
152 |
context_config = self.CONTEXT_PROMPTS.get(
|
153 |
+
request.context, self.CONTEXT_PROMPTS["linkedin"]
|
154 |
)
|
155 |
|
156 |
# Format system prompt with max_tokens and user context
|
src/utils.py
CHANGED
@@ -3,282 +3,316 @@ Utility functions for Smart Auto-Complete
|
|
3 |
Provides common functionality for text processing, logging, and validation
|
4 |
"""
|
5 |
|
|
|
6 |
import logging
|
7 |
import re
|
8 |
import sys
|
9 |
-
from typing import Dict, List, Optional, Tuple
|
10 |
-
import html
|
11 |
import unicodedata
|
|
|
12 |
|
13 |
|
14 |
def setup_logging(level: str = "INFO") -> logging.Logger:
|
15 |
"""
|
16 |
Set up logging configuration for the application
|
17 |
-
|
18 |
Args:
|
19 |
level: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
20 |
-
|
21 |
Returns:
|
22 |
Configured logger instance
|
23 |
"""
|
24 |
# Create logger
|
25 |
logger = logging.getLogger("smart_autocomplete")
|
26 |
logger.setLevel(getattr(logging, level.upper()))
|
27 |
-
|
28 |
# Remove existing handlers to avoid duplicates
|
29 |
for handler in logger.handlers[:]:
|
30 |
logger.removeHandler(handler)
|
31 |
-
|
32 |
# Create console handler with formatting
|
33 |
console_handler = logging.StreamHandler(sys.stdout)
|
34 |
console_handler.setLevel(getattr(logging, level.upper()))
|
35 |
-
|
36 |
# Create formatter
|
37 |
formatter = logging.Formatter(
|
38 |
-
|
39 |
-
datefmt=
|
40 |
)
|
41 |
console_handler.setFormatter(formatter)
|
42 |
-
|
43 |
# Add handler to logger
|
44 |
logger.addHandler(console_handler)
|
45 |
-
|
46 |
return logger
|
47 |
|
48 |
|
49 |
def sanitize_input(text: str) -> str:
|
50 |
"""
|
51 |
Sanitize and clean input text for processing
|
52 |
-
|
53 |
Args:
|
54 |
text: Raw input text
|
55 |
-
|
56 |
Returns:
|
57 |
Cleaned and sanitized text
|
58 |
"""
|
59 |
if not text:
|
60 |
return ""
|
61 |
-
|
62 |
# Convert to string if not already
|
63 |
text = str(text)
|
64 |
-
|
65 |
# HTML escape to prevent injection
|
66 |
text = html.escape(text)
|
67 |
-
|
68 |
# Normalize unicode characters
|
69 |
-
text = unicodedata.normalize(
|
70 |
-
|
71 |
# Remove excessive whitespace but preserve structure
|
72 |
-
text = re.sub(r
|
73 |
-
text = re.sub(r
|
74 |
-
|
75 |
# Remove control characters except newlines and tabs
|
76 |
-
text =
|
77 |
-
|
78 |
# Trim leading/trailing whitespace
|
79 |
text = text.strip()
|
80 |
-
|
81 |
return text
|
82 |
|
83 |
|
84 |
def extract_context_hints(text: str) -> Dict[str, any]:
|
85 |
"""
|
86 |
Extract contextual hints from the input text to improve suggestions
|
87 |
-
|
88 |
Args:
|
89 |
text: Input text to analyze
|
90 |
-
|
91 |
Returns:
|
92 |
Dictionary containing context hints
|
93 |
"""
|
94 |
hints = {
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
}
|
104 |
-
|
105 |
text_lower = text.lower()
|
106 |
-
|
107 |
# Check for email patterns
|
108 |
-
email_greetings = [
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# Check for code patterns
|
115 |
-
code_markers = [
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
# Check for questions
|
119 |
-
hints[
|
120 |
-
|
|
|
|
|
121 |
# Determine tone
|
122 |
-
formal_words = [
|
123 |
-
casual_words = [
|
124 |
-
|
125 |
formal_count = sum(1 for word in formal_words if word in text_lower)
|
126 |
casual_count = sum(1 for word in casual_words if word in text_lower)
|
127 |
-
|
128 |
if formal_count > casual_count:
|
129 |
-
hints[
|
130 |
elif casual_count > formal_count:
|
131 |
-
hints[
|
132 |
-
|
133 |
# Determine language style
|
134 |
-
if hints[
|
135 |
-
hints[
|
136 |
-
elif hints[
|
137 |
-
hints[
|
138 |
-
elif any(
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
141 |
return hints
|
142 |
|
143 |
|
144 |
def validate_api_key(api_key: str, provider: str) -> bool:
|
145 |
"""
|
146 |
Validate API key format for different providers
|
147 |
-
|
148 |
Args:
|
149 |
api_key: The API key to validate
|
150 |
provider: The provider name (openai, anthropic)
|
151 |
-
|
152 |
Returns:
|
153 |
True if the key format is valid, False otherwise
|
154 |
"""
|
155 |
if not api_key or not isinstance(api_key, str):
|
156 |
return False
|
157 |
-
|
158 |
api_key = api_key.strip()
|
159 |
-
|
160 |
-
if provider.lower() ==
|
161 |
# OpenAI keys start with 'sk-' and are typically 51 characters
|
162 |
-
return api_key.startswith(
|
163 |
-
elif provider.lower() ==
|
164 |
-
# Anthropic keys start with 'sk-ant-'
|
165 |
-
return api_key.startswith(
|
166 |
-
|
167 |
return False
|
168 |
|
169 |
|
170 |
def truncate_text(text: str, max_length: int, preserve_words: bool = True) -> str:
|
171 |
"""
|
172 |
Truncate text to a maximum length while optionally preserving word boundaries
|
173 |
-
|
174 |
Args:
|
175 |
text: Text to truncate
|
176 |
max_length: Maximum allowed length
|
177 |
preserve_words: Whether to preserve word boundaries
|
178 |
-
|
179 |
Returns:
|
180 |
Truncated text
|
181 |
"""
|
182 |
if len(text) <= max_length:
|
183 |
return text
|
184 |
-
|
185 |
if not preserve_words:
|
186 |
return text[:max_length].rstrip() + "..."
|
187 |
-
|
188 |
# Find the last space before the max_length
|
189 |
truncated = text[:max_length]
|
190 |
-
last_space = truncated.rfind(
|
191 |
-
|
192 |
if last_space > max_length * 0.8: # Only use word boundary if it's not too far back
|
193 |
return text[:last_space].rstrip() + "..."
|
194 |
else:
|
195 |
return text[:max_length].rstrip() + "..."
|
196 |
|
197 |
|
198 |
-
def format_suggestions_for_display(
|
|
|
|
|
199 |
"""
|
200 |
Format suggestions for display in the UI
|
201 |
-
|
202 |
Args:
|
203 |
suggestions: List of suggestion strings
|
204 |
max_display_length: Maximum length for display
|
205 |
-
|
206 |
Returns:
|
207 |
List of formatted suggestion dictionaries
|
208 |
"""
|
209 |
formatted = []
|
210 |
-
|
211 |
for i, suggestion in enumerate(suggestions, 1):
|
212 |
# Clean the suggestion
|
213 |
clean_suggestion = sanitize_input(suggestion)
|
214 |
-
|
215 |
# Create display version (truncated if needed)
|
216 |
display_text = truncate_text(clean_suggestion, max_display_length)
|
217 |
-
|
218 |
-
formatted.append(
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
226 |
return formatted
|
227 |
|
228 |
|
229 |
def calculate_text_similarity(text1: str, text2: str) -> float:
|
230 |
"""
|
231 |
Calculate similarity between two texts using simple word overlap
|
232 |
-
|
233 |
Args:
|
234 |
text1: First text
|
235 |
text2: Second text
|
236 |
-
|
237 |
Returns:
|
238 |
Similarity score between 0 and 1
|
239 |
"""
|
240 |
if not text1 or not text2:
|
241 |
return 0.0
|
242 |
-
|
243 |
# Convert to lowercase and split into words
|
244 |
words1 = set(text1.lower().split())
|
245 |
words2 = set(text2.lower().split())
|
246 |
-
|
247 |
# Calculate Jaccard similarity
|
248 |
intersection = len(words1.intersection(words2))
|
249 |
union = len(words1.union(words2))
|
250 |
-
|
251 |
return intersection / union if union > 0 else 0.0
|
252 |
|
253 |
|
254 |
def get_text_stats(text: str) -> Dict[str, int]:
|
255 |
"""
|
256 |
Get basic statistics about the text
|
257 |
-
|
258 |
Args:
|
259 |
text: Text to analyze
|
260 |
-
|
261 |
Returns:
|
262 |
Dictionary with text statistics
|
263 |
"""
|
264 |
if not text:
|
265 |
-
return {
|
266 |
-
|
267 |
# Count characters (excluding whitespace)
|
268 |
-
char_count = len(text.replace(
|
269 |
-
|
270 |
# Count words
|
271 |
word_count = len(text.split())
|
272 |
-
|
273 |
# Count sentences (rough estimate)
|
274 |
-
sentence_count = len(re.findall(r
|
275 |
-
|
276 |
# Count paragraphs
|
277 |
-
paragraph_count = len([p for p in text.split(
|
278 |
-
|
279 |
return {
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
}
|
|
|
3 |
Provides common functionality for text processing, logging, and validation
|
4 |
"""
|
5 |
|
6 |
+
import html
|
7 |
import logging
|
8 |
import re
|
9 |
import sys
|
|
|
|
|
10 |
import unicodedata
|
11 |
+
from typing import Dict, List, Optional, Tuple
|
12 |
|
13 |
|
14 |
def setup_logging(level: str = "INFO") -> logging.Logger:
|
15 |
"""
|
16 |
Set up logging configuration for the application
|
17 |
+
|
18 |
Args:
|
19 |
level: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
20 |
+
|
21 |
Returns:
|
22 |
Configured logger instance
|
23 |
"""
|
24 |
# Create logger
|
25 |
logger = logging.getLogger("smart_autocomplete")
|
26 |
logger.setLevel(getattr(logging, level.upper()))
|
27 |
+
|
28 |
# Remove existing handlers to avoid duplicates
|
29 |
for handler in logger.handlers[:]:
|
30 |
logger.removeHandler(handler)
|
31 |
+
|
32 |
# Create console handler with formatting
|
33 |
console_handler = logging.StreamHandler(sys.stdout)
|
34 |
console_handler.setLevel(getattr(logging, level.upper()))
|
35 |
+
|
36 |
# Create formatter
|
37 |
formatter = logging.Formatter(
|
38 |
+
"%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
39 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
40 |
)
|
41 |
console_handler.setFormatter(formatter)
|
42 |
+
|
43 |
# Add handler to logger
|
44 |
logger.addHandler(console_handler)
|
45 |
+
|
46 |
return logger
|
47 |
|
48 |
|
49 |
def sanitize_input(text: str) -> str:
|
50 |
"""
|
51 |
Sanitize and clean input text for processing
|
52 |
+
|
53 |
Args:
|
54 |
text: Raw input text
|
55 |
+
|
56 |
Returns:
|
57 |
Cleaned and sanitized text
|
58 |
"""
|
59 |
if not text:
|
60 |
return ""
|
61 |
+
|
62 |
# Convert to string if not already
|
63 |
text = str(text)
|
64 |
+
|
65 |
# HTML escape to prevent injection
|
66 |
text = html.escape(text)
|
67 |
+
|
68 |
# Normalize unicode characters
|
69 |
+
text = unicodedata.normalize("NFKC", text)
|
70 |
+
|
71 |
# Remove excessive whitespace but preserve structure
|
72 |
+
text = re.sub(r"\n\s*\n\s*\n", "\n\n", text) # Max 2 consecutive newlines
|
73 |
+
text = re.sub(r"[ \t]+", " ", text) # Multiple spaces/tabs to single space
|
74 |
+
|
75 |
# Remove control characters except newlines and tabs
|
76 |
+
text = "".join(char for char in text if ord(char) >= 32 or char in "\n\t")
|
77 |
+
|
78 |
# Trim leading/trailing whitespace
|
79 |
text = text.strip()
|
80 |
+
|
81 |
return text
|
82 |
|
83 |
|
84 |
def extract_context_hints(text: str) -> Dict[str, any]:
|
85 |
"""
|
86 |
Extract contextual hints from the input text to improve suggestions
|
87 |
+
|
88 |
Args:
|
89 |
text: Input text to analyze
|
90 |
+
|
91 |
Returns:
|
92 |
Dictionary containing context hints
|
93 |
"""
|
94 |
hints = {
|
95 |
+
"length": len(text),
|
96 |
+
"word_count": len(text.split()),
|
97 |
+
"has_greeting": False,
|
98 |
+
"has_signature": False,
|
99 |
+
"has_code_markers": False,
|
100 |
+
"has_questions": False,
|
101 |
+
"tone": "neutral",
|
102 |
+
"language_style": "linkedin",
|
103 |
}
|
104 |
+
|
105 |
text_lower = text.lower()
|
106 |
+
|
107 |
# Check for email patterns
|
108 |
+
email_greetings = [
|
109 |
+
"dear",
|
110 |
+
"hello",
|
111 |
+
"hi",
|
112 |
+
"greetings",
|
113 |
+
"good morning",
|
114 |
+
"good afternoon",
|
115 |
+
]
|
116 |
+
email_signatures = [
|
117 |
+
"sincerely",
|
118 |
+
"best regards",
|
119 |
+
"thank you",
|
120 |
+
"yours truly",
|
121 |
+
"kind regards",
|
122 |
+
]
|
123 |
+
|
124 |
+
hints["has_greeting"] = any(greeting in text_lower for greeting in email_greetings)
|
125 |
+
hints["has_signature"] = any(
|
126 |
+
signature in text_lower for signature in email_signatures
|
127 |
+
)
|
128 |
+
|
129 |
# Check for code patterns
|
130 |
+
code_markers = [
|
131 |
+
"//",
|
132 |
+
"/*",
|
133 |
+
"*/",
|
134 |
+
"#",
|
135 |
+
"def ",
|
136 |
+
"function",
|
137 |
+
"class ",
|
138 |
+
"import ",
|
139 |
+
"from ",
|
140 |
+
]
|
141 |
+
hints["has_code_markers"] = any(marker in text_lower for marker in code_markers)
|
142 |
+
|
143 |
# Check for questions
|
144 |
+
hints["has_questions"] = "?" in text or any(
|
145 |
+
q in text_lower for q in ["what", "how", "why", "when", "where", "who"]
|
146 |
+
)
|
147 |
+
|
148 |
# Determine tone
|
149 |
+
formal_words = ["please", "kindly", "respectfully", "sincerely", "professional"]
|
150 |
+
casual_words = ["hey", "yeah", "cool", "awesome", "thanks"]
|
151 |
+
|
152 |
formal_count = sum(1 for word in formal_words if word in text_lower)
|
153 |
casual_count = sum(1 for word in casual_words if word in text_lower)
|
154 |
+
|
155 |
if formal_count > casual_count:
|
156 |
+
hints["tone"] = "formal"
|
157 |
elif casual_count > formal_count:
|
158 |
+
hints["tone"] = "casual"
|
159 |
+
|
160 |
# Determine language style
|
161 |
+
if hints["has_code_markers"]:
|
162 |
+
hints["language_style"] = "technical"
|
163 |
+
elif hints["has_greeting"] or hints["has_signature"]:
|
164 |
+
hints["language_style"] = "business"
|
165 |
+
elif any(
|
166 |
+
creative in text_lower
|
167 |
+
for creative in ["once upon", "story", "character", "plot"]
|
168 |
+
):
|
169 |
+
hints["language_style"] = "creative"
|
170 |
+
|
171 |
return hints
|
172 |
|
173 |
|
174 |
def validate_api_key(api_key: str, provider: str) -> bool:
|
175 |
"""
|
176 |
Validate API key format for different providers
|
177 |
+
|
178 |
Args:
|
179 |
api_key: The API key to validate
|
180 |
provider: The provider name (openai, anthropic)
|
181 |
+
|
182 |
Returns:
|
183 |
True if the key format is valid, False otherwise
|
184 |
"""
|
185 |
if not api_key or not isinstance(api_key, str):
|
186 |
return False
|
187 |
+
|
188 |
api_key = api_key.strip()
|
189 |
+
|
190 |
+
if provider.lower() == "openai":
|
191 |
# OpenAI keys start with 'sk-' and are typically 51 characters
|
192 |
+
return api_key.startswith("sk-") and len(api_key) >= 40
|
193 |
+
elif provider.lower() == "anthropic":
|
194 |
+
# Anthropic keys start with 'sk-ant-'
|
195 |
+
return api_key.startswith("sk-ant-") and len(api_key) >= 40
|
196 |
+
|
197 |
return False
|
198 |
|
199 |
|
200 |
def truncate_text(text: str, max_length: int, preserve_words: bool = True) -> str:
|
201 |
"""
|
202 |
Truncate text to a maximum length while optionally preserving word boundaries
|
203 |
+
|
204 |
Args:
|
205 |
text: Text to truncate
|
206 |
max_length: Maximum allowed length
|
207 |
preserve_words: Whether to preserve word boundaries
|
208 |
+
|
209 |
Returns:
|
210 |
Truncated text
|
211 |
"""
|
212 |
if len(text) <= max_length:
|
213 |
return text
|
214 |
+
|
215 |
if not preserve_words:
|
216 |
return text[:max_length].rstrip() + "..."
|
217 |
+
|
218 |
# Find the last space before the max_length
|
219 |
truncated = text[:max_length]
|
220 |
+
last_space = truncated.rfind(" ")
|
221 |
+
|
222 |
if last_space > max_length * 0.8: # Only use word boundary if it's not too far back
|
223 |
return text[:last_space].rstrip() + "..."
|
224 |
else:
|
225 |
return text[:max_length].rstrip() + "..."
|
226 |
|
227 |
|
228 |
+
def format_suggestions_for_display(
|
229 |
+
suggestions: List[str], max_display_length: int = 100
|
230 |
+
) -> List[Dict[str, str]]:
|
231 |
"""
|
232 |
Format suggestions for display in the UI
|
233 |
+
|
234 |
Args:
|
235 |
suggestions: List of suggestion strings
|
236 |
max_display_length: Maximum length for display
|
237 |
+
|
238 |
Returns:
|
239 |
List of formatted suggestion dictionaries
|
240 |
"""
|
241 |
formatted = []
|
242 |
+
|
243 |
for i, suggestion in enumerate(suggestions, 1):
|
244 |
# Clean the suggestion
|
245 |
clean_suggestion = sanitize_input(suggestion)
|
246 |
+
|
247 |
# Create display version (truncated if needed)
|
248 |
display_text = truncate_text(clean_suggestion, max_display_length)
|
249 |
+
|
250 |
+
formatted.append(
|
251 |
+
{
|
252 |
+
"id": i,
|
253 |
+
"text": clean_suggestion,
|
254 |
+
"display_text": display_text,
|
255 |
+
"length": len(clean_suggestion),
|
256 |
+
"word_count": len(clean_suggestion.split()),
|
257 |
+
}
|
258 |
+
)
|
259 |
+
|
260 |
return formatted
|
261 |
|
262 |
|
263 |
def calculate_text_similarity(text1: str, text2: str) -> float:
|
264 |
"""
|
265 |
Calculate similarity between two texts using simple word overlap
|
266 |
+
|
267 |
Args:
|
268 |
text1: First text
|
269 |
text2: Second text
|
270 |
+
|
271 |
Returns:
|
272 |
Similarity score between 0 and 1
|
273 |
"""
|
274 |
if not text1 or not text2:
|
275 |
return 0.0
|
276 |
+
|
277 |
# Convert to lowercase and split into words
|
278 |
words1 = set(text1.lower().split())
|
279 |
words2 = set(text2.lower().split())
|
280 |
+
|
281 |
# Calculate Jaccard similarity
|
282 |
intersection = len(words1.intersection(words2))
|
283 |
union = len(words1.union(words2))
|
284 |
+
|
285 |
return intersection / union if union > 0 else 0.0
|
286 |
|
287 |
|
288 |
def get_text_stats(text: str) -> Dict[str, int]:
|
289 |
"""
|
290 |
Get basic statistics about the text
|
291 |
+
|
292 |
Args:
|
293 |
text: Text to analyze
|
294 |
+
|
295 |
Returns:
|
296 |
Dictionary with text statistics
|
297 |
"""
|
298 |
if not text:
|
299 |
+
return {"characters": 0, "words": 0, "sentences": 0, "paragraphs": 0}
|
300 |
+
|
301 |
# Count characters (excluding whitespace)
|
302 |
+
char_count = len(text.replace(" ", "").replace("\n", "").replace("\t", ""))
|
303 |
+
|
304 |
# Count words
|
305 |
word_count = len(text.split())
|
306 |
+
|
307 |
# Count sentences (rough estimate)
|
308 |
+
sentence_count = len(re.findall(r"[.!?]+", text))
|
309 |
+
|
310 |
# Count paragraphs
|
311 |
+
paragraph_count = len([p for p in text.split("\n\n") if p.strip()])
|
312 |
+
|
313 |
return {
|
314 |
+
"characters": char_count,
|
315 |
+
"words": word_count,
|
316 |
+
"sentences": max(1, sentence_count), # At least 1 sentence
|
317 |
+
"paragraphs": max(1, paragraph_count), # At least 1 paragraph
|
318 |
}
|