import gradio as gr import os import base64 import pandas as pd from PIL import Image from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, OpenAIServerModel, tool, Tool from typing import Optional import requests from io import BytesIO import re from pathlib import Path import openai from openai import OpenAI import pdfplumber import numpy as np import textwrap import docx2txt from odf.opendocument import load as load_odt ## utilties and class definition def is_image_extension(filename: str) -> bool: IMAGE_EXTS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.svg'} ext = os.path.splitext(filename)[1].lower() # os.path.splitext(path) returns (root, ext) return ext in IMAGE_EXTS def load_file(path: str) -> dict: """Based on the file extension, load the file into a suitable object.""" text = None ext = Path(path).suffix.lower() # same as os.path.splitext(filename)[1].lower() match ext: case '.jpg'| '.jpeg'| '.png'| '.gif'| '.bmp'| '.tiff'| '.webp'| '.svg': return {"image path": path} case '.docx': text = docx2txt.process(path) case ".xlsx" | ".xls" : text = pd.read_excel(path) # DataFrame text = str(text).strip() case '.odt': text = load_odt(path) text = str(text.body).strip() pass case ".csv": text = pd.read_csv(path) # DataFrame text = str(text).strip() case ".pdf": with pdfplumber.open(path) as pdf: text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text()) case '.py' | '.txt': with open(path, 'r') as f: text = f.read() # plain text str case '.mp3' | '.wav': return {"audio path": path} case _: # default case text = None return {"raw document text": text, "file path": path} def check_format(answer: str | list, *args, **kwargs) -> list: """Check if the answer is a list and not a nested list.""" # other args are ignored on purpose, they are there just for compatibility print("Checking format of the answer:", answer) if isinstance(answer, list): for item in answer: if isinstance(item, list): print("Nested list detected") raise TypeError("Nested lists are not allowed in the final answer.") print("Final answer is a list:") return answer elif isinstance(answer, str): return [answer] elif isinstance(answer, dict): raise TypeError("Final answer must be a list, not a dict. Please check the answer format.") else: raise TypeError("Answer format not recognized. The answer must be either a list or a string.") ## tools definition @tool def download_images(image_urls: str) -> list: """ Download web images from the given comma‐separated URLs and return them in a list of PIL Images. Args: image_urls: comma‐separated list of URLs to download Returns: List of PIL.Image.Image objects wrapped by gr.Image """ urls = [u.strip() for u in image_urls.split(",") if u.strip()] # strip() removes whitespaces images = [] for n_url, url in enumerate(urls, start=1): # enumerate seems not needed... keeping it for now try: # Fetch the image bytes resp = requests.get(url, timeout=10) resp.raise_for_status() # Load into a PIL image img = Image.open(BytesIO(resp.content)).convert("RGB") images.append(img) except Exception as e: print(f"Failed to download from url {n_url} ({url}): {e}") wrapped = [] for img in images: wrapped.append(gr.Image(value=img)) return wrapped @tool # since they gave us OpenAI API credits, we can keep using it def transcribe_audio(audio_path: str) -> str: """ Transcribe audio file using OpenAI Whisper API. Args: audio_path: path to the audio file to be transcribed. Returns: str : Transcription of the audio. """ try: client = openai.Client(api_key=os.getenv("OPENAI_API_KEY")) with open(audio_path, "rb") as audio: # to modify path because it is arriving from gradio transcript = client.audio.transcriptions.create( file=audio, model="whisper-1", response_format="text", ) print(transcript) return transcript except Exception as e: print(f"Error transcribing audio: {e}") return "" @tool def generate_image(prompt: str, neg_prompt: str) -> Image.Image: """ Generate an image based on a text prompt using Flux Dev. Args: prompt: The text prompt to generate the image from. neg_prompt: The negative prompt to avoid certain elements in the image. Returns: Image.Image: The generated image as a PIL Image object. """ client = OpenAI(base_url="https://api.studio.nebius.com/v1", api_key=os.environ.get("NEBIUS_API_KEY"), ) completion = client.images.generate( model="black-forest-labs/flux-dev", prompt=prompt, response_format="b64_json", extra_body={ "response_extension": "png", "width": 1024, "height": 1024, "num_inference_steps": 30, "seed": -1, "negative_prompt": neg_prompt, } ) image_data = base64.b64decode(completion.to_dict()['data'][0]['b64_json']) image = BytesIO(image_data) image = Image.open(image).convert("RGB") return gr.Image(value=image, label="Generated Image") @tool def generate_audio(prompt: str, duration: int) -> gr.Component: """ Generate audio from a text prompt using MusicGen. Args: prompt: The text prompt to generate the audio from. duration: Duration of the generated audio in seconds. Max 30 seconds. Returns: gr.Component: The generated audio as a Gradio Audio component. """ DURATION_LIMIT = 30 duration = duration if duration < DURATION_LIMIT else DURATION_LIMIT client = Tool.from_space( space_id="luke9705/MusicGen_custom", token=os.environ.get('HF_TOKEN'), name="Sound_Generator", description="Generate music or sound effects from a text prompt using MusicGen." ) sound = client(prompt, duration) return gr.Audio(value=sound) @tool def generate_audio_from_sample(prompt: str, duration: int, sample_path: str = None) -> gr.Component: """ Generate audio from a text prompt + audio sample using MusicGen. Args: prompt: The text prompt to generate the audio from. duration: Duration of the generated audio in seconds. Max 30 seconds. sample_path: audio sample path to guide generation. Returns: gr.Component: The generated audio as a Gradio Audio component. """ DURATION_LIMIT = 30 duration = duration if duration < DURATION_LIMIT else DURATION_LIMIT client = Tool.from_space( space_id="luke9705/MusicGen_custom", token=os.environ.get('HF_TOKEN'), name="Sound_Generator", description="Generate music or sound effects from a text prompt using MusicGen." ) sound = client(prompt, duration, sample_path) return gr.Audio(value=sound) @tool def caption_image(img_path: str, prompt: str) -> str: """ Generate a caption for an image at the given path using Gemma3. Args: img_path: The file path to the image to be captioned. prompt: A text prompt describing what you want the model to focus on or ask about the image. Returns: str: A description of the image. """ client_2 = HfApiModel("google/gemma-3-27b-it", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY")) with open(img_path, "rb") as f: encoded = base64.b64encode(f.read()).decode("utf-8") data_uri = f"data:image/jpeg;base64,{encoded}" messages = [{"role": "user", "content": [ { "type": "text", "text": prompt, }, { "type": "image_url", "image_url": { "url": data_uri } } ]}] resp = client_2(messages) return resp.content ## agent definition class Agent: def __init__(self, ): #client = HfApiModel("deepseek-ai/DeepSeek-R1-0528", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY")) client = HfApiModel("Qwen/Qwen3-32B", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY")) """client = OpenAIServerModel( model_id="claude-opus-4-20250514", api_base="https://api.anthropic.com/v1/", api_key=os.environ["ANTHROPIC_API_KEY"], )""" self.agent = CodeAgent( model=client, tools=[DuckDuckGoSearchTool(max_results=5), VisitWebpageTool(max_output_length=20000), generate_image, generate_audio_from_sample, generate_audio, caption_image, download_images, transcribe_audio], additional_authorized_imports=["pandas", "PIL", "io"], planning_interval=3, max_steps=6, stream_outputs=False, final_answer_checks=[check_format] ) with open("system_prompt.txt", "r") as f: system_prompt = f.read() self.agent.prompt_templates["system_prompt"] = system_prompt #print("System prompt:", self.agent.prompt_templates["system_prompt"]) def __call__(self, message: str, images: Optional[list[Image.Image]] = None, files: Optional[str] = None, conversation_history: Optional[dict] = None) -> str: answer = self.agent.run(message, images = images, additional_args={"files": files, "conversation_history": conversation_history}) return answer ## gradio functions def respond(message: str, history : dict, web_search: bool = False): global agent # input print("history:", history) text = message.get("text", "") if not message.get("files") and not web_search: # no files uploaded print("No files received.") message = agent(text + "\nADDITIONAL CONTRAINT: Don't use web search", conversation_history=history) # conversation_history is a dict with the history of the conversation elif not message.get("files") and web_search: # no files uploaded print("No files received + web search enabled.") message = agent(text, conversation_history=history) else: files = message.get("files", []) if not web_search: file = load_file(files[0]) message = agent(text + "\nADDITIONAL CONTRAINT: Don't use web search", files=file, conversation_history=history) else: file = load_file(files[0]) message = agent(text, files=file, conversation_history=history) # output print("Agent response:", message) return message def initialize_agent(): agent = Agent() print("Agent initialized.") return agent ## gradio interface description = textwrap.dedent("""**Scriptura** is a multi-agent AI framework based on HF-SmolAgents that streamlines the creation of screenplays, storyboards, and soundtracks by automating the stages of analysis, summarization, and multimodal enrichment, freeing authors to focus on pure creativity. At its heart: - **Qwen3-32B** serves as the primary orchestrating agent, coordinating workflows and managing high-level reasoning across the system. - **Gemma-3-27B-IT** acts as a specialized assistant for multimodal tasks, supporting both text and audio inputs to refine narrative elements and prepare them for downstream generation. For media generation, Scriptura integrates: - **MusicGen** models (per the AudioCraft MusicGen specification), deployed via Hugging Face Spaces, enabling the agent to produce original soundtracks and sound effects from text prompts or combined text + audio samples. - **FLUX (black-forest-labs/FLUX.1-dev)** for on-the-fly image creation, ideal for storyboards, concept art, and visual references that seamlessly tie into the narrative flow. Optionally, Scriptura can query external sources (e.g., via a DuckDuckGo API integration) to pull in reference scripts, sound samples, or research materials, ensuring that every draft is not only creatively rich but also contextually informed. To view the presentation **video**, click [here](https://www.youtube.com/watch?v=I0201ruB1Uo&ab_channel=3DLabFactory) For more information: [README.md](https://huggingface.co/spaces/Agents-MCP-Hackathon/MultiAgent_System_for_Screenplay_Creation/blob/main/README.md) **Important**: if you’re interested in trying the sound generation feature, please open a discussion to request that we restart our custom space. We have limited credits, so we appreciate your understanding 🤓 """) # global agent agent = initialize_agent() demo = gr.ChatInterface( fn=respond, type='messages', multimodal=True, title='Scriptura: A MultiAgent System for Screenplay Creation and Editing 🎞️', description=description, show_progress='full', fill_height=True, fill_width=True, save_history=True, autoscroll=True, additional_inputs=[ gr.Checkbox(value=False, label="Web Search", info="Enable web search to find information online. If disabled, the agent will only use the provided files and images.", render=False), ], additional_inputs_accordion=gr.Accordion(label="Tools available: ", open=True, render=False) ).queue() if __name__ == "__main__": demo.launch()