import modal from utils.youtube_utils import download_youtube_video from reports.pdf_report import generate_pdf_report last_face_result = "" last_voice_result = "" last_video_results = [] verify_faces_remote = modal.Function.lookup("deepface-agent", "verify_faces_remote") verify_voices_remote = modal.Function.lookup("deepface-agent", "verify_voices_remote") verify_faces_in_video_remote = modal.Function.lookup( "deepface-agent", "verify_faces_in_video_remote" ) def compare_faces(img1_path: str, img2_path: str) -> str: """Use this tool to compare to faces for a match Args: img1_path: The path to the first image img2_path: The path to the second image """ global last_face_result # Read image files as bytes with open(img1_path, "rb") as f1, open(img2_path, "rb") as f2: img1_bytes = f1.read() img2_bytes = f2.read() result = verify_faces_remote.remote(img1_bytes, img2_bytes) result_text = "" if "error" in result: return f"❌ Error: {result['error']}" if result["verified"]: result_text = f"✅ Match! Distance: {result['distance']:.4f} (Threshold: {result['threshold']})" last_face_result = result_text return result_text else: result_text = f"❌ No Match. Distance: {result['distance']:.4f} (Threshold: {result['threshold']})" last_face_result = result_text return result_text def compare_voices(audio1: str, audio2: str) -> str: """Use this tool to compare two voices for a match Args: audio1: The path to the first audio file audio2: The path to the second audio file """ global last_voice_result try: with open(audio1, "rb") as a1, open(audio2, "rb") as a2: audio1_bytes = a1.read() audio2_bytes = a2.read() result = verify_voices_remote.remote(audio1_bytes, audio2_bytes) result_text = "" if "error" in result: return f"❌ Error: {result['error']}" if result["match"]: result_text = f"✅ Same speaker detected. Similarity: {result['similarity']} (Threshold: {result['threshold']})" last_voice_result = result_text return result_text else: result_text = f"❌ Different speakers. Similarity: {result['similarity']} (Threshold: {result['threshold']})" last_voice_result = result_text return result_text except Exception as e: return f"❌ Error reading audio files: {str(e)}" def scan_video(video_file: str, ref_img: str, youtube_url="") -> str: """Use this tool to scan a video for deepfake face swaps Args: video_file: The path to the video file ref_img: The path to the reference image youtube_url: The YouTube URL (optional) """ global last_video_results if youtube_url: try: video_file = download_youtube_video(youtube_url) except Exception as e: return f"❌ Error downloading YouTube video: {str(e)}" with open(video_file, "rb") as vf, open(ref_img, "rb") as rf: video_bytes = vf.read() ref_img_bytes = rf.read() try: results = verify_faces_in_video_remote.remote(video_bytes, ref_img_bytes, interval=30) except Exception as e: return f"❌ Error processing video: {str(e)}" report = "" last_video_results = results for r in results: if "error" in r: report += f"\n⚠️ Frame {r['frame']}: {r['error']}" else: status = "✅ Match" if r["verified"] else "❌ Mismatch" report += f"\n🖼 Frame {r['frame']}: {status} (Distance: {r['distance']})" return report def generate_report(): return generate_pdf_report(last_face_result, last_voice_result, last_video_results)