LearnFlow-AI / app.py
Kyo-Kai's picture
Public Release
7bd8010
import os
import re
import time
import logging
import threading
import subprocess
import gradio as gr
from pathlib import Path
from typing import Optional, Literal
from services.llm_factory import _PROVIDER_MAP
from components.state import SessionState
from components.ui_components import (
create_llm_config_inputs, create_unit_dropdown, create_file_upload,
create_text_input, create_status_markdown, create_primary_button,
create_secondary_button, create_quiz_components,
create_session_management_components, create_export_components,
create_difficulty_radio, create_question_number_slider,
create_question_types_checkboxgroup,
create_stats_card, create_overall_progress_html
)
from agents.models import ExplanationResponse
from utils.common.utils import run_code_snippet
from utils.app_wrappers import (
process_content_wrapper,
navigate_to_learn,
load_unit_wrapper,
generate_explanation_wrapper,
generate_all_explanations_wrapper,
prepare_and_navigate_to_quiz,
generate_quiz_wrapper,
generate_all_quizzes_wrapper,
submit_mcq_wrapper, next_mcq_question,
submit_open_wrapper, next_open_question,
submit_true_false_wrapper, next_true_false_question,
submit_fill_in_the_blank_wrapper, next_fill_in_the_blank_question,
handle_tab_change,
save_session_wrapper, load_session_wrapper,
export_markdown_wrapper, export_html_wrapper, export_pdf_wrapper
)
# Configure essential logging
logging.basicConfig(
level=logging.WARNING,
format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s'
)
PROVIDERS = list(_PROVIDER_MAP.keys())
TAB_IDS_IN_ORDER = ["plan", "learn", "quiz", "progress"]
def create_app():
with gr.Blocks(theme=gr.themes.Base(), title="LearnFlow AI", css_paths=["static/style.css"]) as app:
gr.HTML("""
<div style="text-align: center; padding: 20px;
background: linear-gradient(135deg, #1e293b, #334155);
border-radius: 16px; margin-bottom: 20px;">
<h1 style="color: white; font-size: 2.5em; margin: 0; font-weight: 700;">
πŸŽ“ AI Learning Platform
</h1>
<p style="color: #94a3b8; font-size: 1.2em; margin: 10px 0 0 0;">
Personalized learning powered by artificial intelligence
</p>
</div>
""")
# Global states
global_session = gr.State(SessionState())
explanation_data_state = gr.State(None)
current_code_examples = gr.State([])
quiz_data_state = gr.State(None)
current_question_idx = gr.State(0)
current_open_question_idx = gr.State(0)
current_tf_question_idx = gr.State(0)
current_fitb_question_idx = gr.State(0)
api_keys_store = gr.State({})
# Function to update the API key store and propagate changes to all API key textboxes
def propagate_api_keys(api_keys_store_val, plan_provider_val, learn_provider_val, quiz_provider_val):
return (
api_keys_store_val,
gr.update(value=api_keys_store_val.get(plan_provider_val, "")),
gr.update(value=api_keys_store_val.get(learn_provider_val, "")),
gr.update(value=api_keys_store_val.get(quiz_provider_val, ""))
)
# Function to handle API key input changes
def handle_api_key_input(current_provider, new_api_key, api_keys_store_val):
api_keys_store_val[current_provider] = new_api_key
return api_keys_store_val
# Function to handle provider dropdown changes
def handle_provider_change(new_provider, api_keys_store_val):
# When provider changes, retrieve the stored key for the new provider
new_api_key_for_current_tab = api_keys_store_val.get(new_provider, "")
return new_api_key_for_current_tab, api_keys_store_val
with gr.Tabs() as tabs:
# Plan Tab
with gr.Tab("πŸ“‹ Plan", id="plan", elem_classes="panel"):
gr.Markdown("## Plan Your Learning Journey")
gr.Markdown("Upload your content and let AI create structured learning units")
gr.Markdown("### AI Provider Configuration")
plan_llm_config = create_llm_config_inputs(PROVIDERS, "mistral", initial_api_key=api_keys_store.value.get("mistral", ""))
ai_provider_plan = plan_llm_config["provider"]
model_name_plan = plan_llm_config["model"]
api_key_plan = plan_llm_config["api_key"]
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ“„ Upload Document")
file_in = create_file_upload()
gr.Markdown("*PDF, DOC, TXT, PPTX, MD supported*")
with gr.Column(scale=1):
gr.Markdown("### ✍️ Paste Content")
text_in = create_text_input(lines=8)
with gr.Row():
input_type = gr.Radio(choices=["File", "Text"], value="Text", label="Content Type")
plan_btn = create_primary_button("πŸš€ Process with AI")
plan_status = create_status_markdown(
"Upload content and click 'Process with AI' to generate learning units."
)
with gr.Row():
unit_dropdown = create_unit_dropdown("Generated Learning Units")
navigate_btn = create_secondary_button("Continue Learning β†’")
units_display = gr.Markdown("No units generated yet.")
# Learn Tab
with gr.Tab("πŸ“š Learn", id="learn", elem_classes="panel"):
gr.Markdown("## Interactive Learning")
gr.Markdown("AI-powered explanations tailored to your learning style")
gr.Markdown("### AI Provider Configuration")
learn_llm_config = create_llm_config_inputs(PROVIDERS, "mistral", initial_api_key=api_keys_store.value.get("mistral", ""))
learn_provider_dd = learn_llm_config["provider"]
model_name_learn = learn_llm_config["model"]
api_key_learn = learn_llm_config["api_key"]
with gr.Row():
with gr.Column():
learn_unit_dropdown = create_unit_dropdown("Learning Unit")
with gr.Column():
load_unit_btn = create_secondary_button("πŸ“– Load Unit")
current_unit_info = gr.Markdown("No unit selected.")
gr.Markdown("### Learning Style")
with gr.Row():
explanation_style_radio = gr.Radio(
choices=["Concise", "Detailed"], value="Concise", label=""
)
with gr.Row():
explain_btn = create_primary_button("✨ Generate Explanation")
generate_all_explanations_btn = create_secondary_button(
"Generate All Chapters", elem_classes="secondary-btn"
)
explanation_status = create_status_markdown("")
explanation_container = gr.Column(visible=False)
with explanation_container:
pass
quiz_nav_btn = create_secondary_button("πŸ“ Take Unit Quiz", elem_classes="danger-btn")
# Quiz Tab
with gr.Tab("❓ Quiz", id="quiz", elem_classes="panel"):
gr.Markdown("## Knowledge Assessment")
gr.Markdown("Test your understanding with AI-generated quizzes")
quiz_unit_dropdown = create_unit_dropdown("Select Unit to Test")
gr.Markdown("### Question Types")
with gr.Row():
with gr.Column():
question_types_checkboxgroup = create_question_types_checkboxgroup()
with gr.Column():
pass
gr.Markdown("### Difficulty Level")
difficulty_radio = create_difficulty_radio()
gr.Markdown("### Questions Count")
question_number_slider = create_question_number_slider()
gr.Markdown("### AI Provider Configuration")
quiz_llm_config = create_llm_config_inputs(PROVIDERS, "mistral", initial_api_key=api_keys_store.value.get("mistral", ""))
ai_provider_quiz = quiz_llm_config["provider"]
model_name_quiz = quiz_llm_config["model"]
api_key_quiz = quiz_llm_config["api_key"]
generate_quiz_btn = create_primary_button("🎯 Generate Quiz")
generate_all_quizzes_btn = create_secondary_button(
"Generate ALL Quizzes", elem_classes="secondary-btn"
)
quiz_status = create_status_markdown(
"Select a unit and configure your preferences to start the assessment."
)
quiz_container = gr.Column(visible=False)
with quiz_container:
quiz_components = create_quiz_components()
(mcq_section, mcq_question, mcq_choices, mcq_submit,
mcq_feedback, mcq_next) = (
quiz_components["mcq_section"],
quiz_components["mcq_question"],
quiz_components["mcq_choices"],
quiz_components["mcq_submit"],
quiz_components["mcq_feedback"],
quiz_components["mcq_next"]
)
(open_ended_section, open_question, open_answer,
open_submit, open_feedback, open_next) = (
quiz_components["open_ended_section"],
quiz_components["open_question"],
quiz_components["open_answer"],
quiz_components["open_submit"],
quiz_components["open_feedback"],
quiz_components["open_next"]
)
(tf_section, tf_question, tf_choices, tf_submit,
tf_feedback, tf_next) = (
quiz_components["tf_section"],
quiz_components["tf_question"],
quiz_components["tf_choices"],
quiz_components["tf_submit"],
quiz_components["tf_feedback"],
quiz_components["tf_next"]
)
(fitb_section, fitb_question, fitb_answer, fitb_submit,
fitb_feedback, fitb_next) = (
quiz_components["fitb_section"],
quiz_components["fitb_question"],
quiz_components["fitb_answer"],
quiz_components["fitb_submit"],
quiz_components["fitb_feedback"],
quiz_components["fitb_next"]
)
# Progress Tab
with gr.Tab("πŸ“Š Progress", id="progress", elem_classes="panel"):
gr.Markdown("## Learning Analytics")
with gr.Row():
overall_stats = create_stats_card("Completed", "0", "Units mastered", "βœ…", "#10b981")
in_progress_stats = create_stats_card("In Progress", "0", "Units learning", "πŸ“ˆ", "#3b82f6")
average_score_stats = create_stats_card("Average Score", "0%", "Quiz performance", "🎯", "#f59e0b")
progress_chart = gr.Plot(label="Learning Progress", visible=False)
gr.Markdown("### πŸ“‹ Detailed Progress")
progress_df = gr.Dataframe(
headers=["Learning Unit", "Status", "Quiz Score", "Progress"],
datatype=["str", "str", "str", "number"],
interactive=False
)
gr.Markdown("### 🎯 Overall Learning Progress")
overall_progress = create_overall_progress_html(progress_percentage=0)
gr.Markdown("### πŸ’Ύ Session Management")
session_components = create_session_management_components()
with gr.Row():
session_name_input = session_components["session_name_input"]
with gr.Row():
save_session_btn = session_components["save_session_btn"]
load_session_btn = session_components["load_session_btn"]
saved_sessions_dropdown = session_components["saved_sessions_dropdown"]
session_status = session_components["session_status"]
gr.Markdown("### πŸ“€ Export & Share")
export_components = create_export_components()
with gr.Row():
export_markdown_btn = export_components["export_markdown_btn"]
export_html_btn = export_components["export_html_btn"]
export_pdf_btn = export_components["export_pdf_btn"]
export_file = export_components["export_file"]
export_status = export_components["export_status"]
# --- Dynamic Explanation Renderer ---
@gr.render(inputs=[explanation_data_state])
def render_dynamic_explanation(explanation_data: Optional[ExplanationResponse]):
if not explanation_data:
gr.Markdown("<!-- Explanation will appear here once generated. -->")
return
processed_markdown = explanation_data.markdown
parts = re.split(r'\[CODE_INSERTION_POINT_(\d+)\]', processed_markdown)
for i, part_content in enumerate(parts):
if i % 2 == 0 and part_content.strip():
gr.Markdown(
part_content,
latex_delimiters=[{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}]
)
elif i % 2 == 1:
try:
idx = int(part_content)
if 0 <= idx < len(explanation_data.code_examples or []):
code_example = explanation_data.code_examples[idx]
with gr.Column():
gr.Markdown(f"### πŸ’» {code_example.description or f'Code Example {idx+1}'}")
# Ensure language is one of the literal types expected by gr.Code
allowed_languages = ["python", "javascript", "html", "css", "json", "markdown", "latex"]
lang: Literal["python", "javascript", "html", "css", "json", "markdown", "latex"] = \
code_example.language if code_example.language in allowed_languages else "python" # type: ignore
code_block = gr.Code(language=lang, value=code_example.code)
run_btn = gr.Button("β–Ά Run Code", size="sm")
run_btn.click(run_code_snippet, inputs=[code_block], outputs=[gr.Textbox(label="Output", lines=3, interactive=False)])
except ValueError:
gr.Markdown(f"*(Error: Invalid code placeholder '{part_content}')*")
# --- Event Handlers ---
# Explicitly type Gradio components to help Pylint
plan_btn_typed: gr.Button = plan_btn
navigate_btn_typed: gr.Button = navigate_btn
load_unit_btn_typed: gr.Button = load_unit_btn
explain_btn_typed: gr.Button = explain_btn
generate_all_explanations_btn_typed: gr.Button = generate_all_explanations_btn
quiz_nav_btn_typed: gr.Button = quiz_nav_btn
generate_quiz_btn_typed: gr.Button = generate_quiz_btn
generate_all_quizzes_btn_typed: gr.Button = generate_all_quizzes_btn
mcq_submit_typed: gr.Button = mcq_submit
mcq_next_typed: gr.Button = mcq_next
open_submit_typed: gr.Button = open_submit
open_next_typed: gr.Button = open_next
tf_submit_typed: gr.Button = tf_submit
tf_next_typed: gr.Button = tf_next
fitb_submit_typed: gr.Button = fitb_submit
fitb_next_typed: gr.Button = fitb_next
save_session_btn_typed: gr.Button = save_session_btn
load_session_btn_typed: gr.Button = load_session_btn
export_markdown_btn_typed: gr.Button = export_markdown_btn
export_html_btn_typed: gr.Button = export_html_btn
export_pdf_btn_typed: gr.Button = export_pdf_btn
tabs_typed: gr.Tabs = tabs
# API Key sharing logic
# When provider dropdown changes, update current tab's API key textbox and then propagate
plan_llm_config["provider_dropdown_component"].change(
fn=handle_provider_change,
inputs=[plan_llm_config["provider_dropdown_component"], api_keys_store],
outputs=[plan_llm_config["api_key_textbox_component"], api_keys_store]
).then(
fn=propagate_api_keys,
inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
)
# When API key textbox changes, update the store and then propagate
plan_llm_config["api_key_textbox_component"].change(
fn=handle_api_key_input,
inputs=[plan_llm_config["provider_dropdown_component"], plan_llm_config["api_key_textbox_component"], api_keys_store],
outputs=[api_keys_store]
).then(
fn=propagate_api_keys,
inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
)
learn_llm_config["provider_dropdown_component"].change(
fn=handle_provider_change,
inputs=[learn_llm_config["provider_dropdown_component"], api_keys_store],
outputs=[learn_llm_config["api_key_textbox_component"], api_keys_store]
).then(
fn=propagate_api_keys,
inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
)
learn_llm_config["api_key_textbox_component"].change(
fn=handle_api_key_input,
inputs=[learn_llm_config["provider_dropdown_component"], learn_llm_config["api_key_textbox_component"], api_keys_store],
outputs=[api_keys_store]
).then(
fn=propagate_api_keys,
inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
)
quiz_llm_config["provider_dropdown_component"].change(
fn=handle_provider_change,
inputs=[quiz_llm_config["provider_dropdown_component"], api_keys_store],
outputs=[quiz_llm_config["api_key_textbox_component"], api_keys_store]
).then(
fn=propagate_api_keys,
inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
)
quiz_llm_config["api_key_textbox_component"].change(
fn=handle_api_key_input,
inputs=[quiz_llm_config["provider_dropdown_component"], quiz_llm_config["api_key_textbox_component"], api_keys_store],
outputs=[api_keys_store]
).then(
fn=propagate_api_keys,
inputs=[api_keys_store, plan_llm_config["provider_dropdown_component"], learn_llm_config["provider_dropdown_component"], quiz_llm_config["provider_dropdown_component"]],
outputs=[api_keys_store, plan_llm_config["api_key_textbox_component"], learn_llm_config["api_key_textbox_component"], quiz_llm_config["api_key_textbox_component"]]
)
plan_btn_typed.click(
process_content_wrapper,
inputs=[global_session, ai_provider_plan, model_name_plan, api_key_plan, file_in, text_in, input_type],
outputs=[global_session, plan_status, units_display, unit_dropdown,
learn_unit_dropdown, quiz_unit_dropdown]
)
navigate_btn_typed.click(
navigate_to_learn,
inputs=[global_session, unit_dropdown],
outputs=[plan_status, tabs, global_session]
)
load_unit_btn_typed.click(
load_unit_wrapper,
inputs=[global_session, learn_unit_dropdown],
outputs=[global_session, current_unit_info, explanation_container,
explanation_data_state, current_code_examples, current_unit_info, learn_unit_dropdown]
)
explain_btn_typed.click(
generate_explanation_wrapper,
inputs=[global_session, learn_provider_dd, model_name_learn, api_key_learn, explanation_style_radio, learn_unit_dropdown],
outputs=[global_session, explanation_status, explanation_container,
explanation_data_state, current_code_examples, current_unit_info, learn_unit_dropdown]
)
generate_all_explanations_btn_typed.click(
generate_all_explanations_wrapper,
inputs=[global_session, learn_provider_dd, model_name_learn, api_key_learn, explanation_style_radio],
outputs=[global_session, explanation_status, explanation_container,
explanation_data_state, current_code_examples, current_unit_info, learn_unit_dropdown]
)
quiz_nav_btn_typed.click(
prepare_and_navigate_to_quiz,
inputs=[global_session, learn_provider_dd, model_name_learn, api_key_learn, gr.State(TAB_IDS_IN_ORDER)],
outputs=[global_session, explanation_status, tabs, explanation_container,
explanation_data_state, current_code_examples, current_unit_info,
quiz_status, quiz_container, mcq_question, mcq_choices, open_question, quiz_data_state, current_question_idx,
tf_question, fitb_question, mcq_section, open_ended_section,
tf_section, fitb_section, current_open_question_idx, open_next]
)
generate_quiz_btn_typed.click(
generate_quiz_wrapper,
inputs=[global_session, quiz_unit_dropdown, ai_provider_quiz, model_name_quiz, api_key_quiz,
difficulty_radio, question_number_slider, question_types_checkboxgroup],
outputs=[global_session, quiz_data_state, current_question_idx, quiz_status,
quiz_container, mcq_question, mcq_choices, open_question,
tf_question, fitb_question, mcq_feedback, mcq_section,
open_ended_section, tf_section, fitb_section, current_open_question_idx, open_next]
)
generate_all_quizzes_btn_typed.click(
generate_all_quizzes_wrapper,
inputs=[global_session, ai_provider_quiz, model_name_quiz, api_key_quiz],
outputs=[global_session, quiz_data_state, current_question_idx, quiz_status,
quiz_container, mcq_question, mcq_choices, open_question,
tf_question, fitb_question, mcq_feedback, mcq_section,
open_ended_section, tf_section, fitb_section, current_open_question_idx, open_next]
)
mcq_submit_typed.click(
submit_mcq_wrapper,
inputs=[global_session, quiz_data_state, current_question_idx,
mcq_choices, ai_provider_quiz, model_name_quiz, api_key_quiz],
outputs=[mcq_feedback, mcq_next]
)
mcq_next_typed.click(
next_mcq_question,
inputs=[quiz_data_state, current_question_idx],
outputs=[current_question_idx, mcq_question, mcq_choices,
mcq_feedback, mcq_next]
)
open_submit_typed.click(
submit_open_wrapper,
inputs=[global_session, quiz_data_state, current_open_question_idx, open_answer, ai_provider_quiz, model_name_quiz, api_key_quiz],
outputs=[open_feedback, open_next]
)
open_next_typed.click(
next_open_question,
inputs=[quiz_data_state, current_open_question_idx],
outputs=[current_open_question_idx, open_question, open_answer,
open_feedback, open_next]
)
tf_submit_typed.click(
submit_true_false_wrapper,
inputs=[global_session, quiz_data_state, current_tf_question_idx,
tf_choices, ai_provider_quiz, model_name_quiz, api_key_quiz],
outputs=[tf_feedback, tf_next]
)
tf_next_typed.click(
next_true_false_question,
inputs=[quiz_data_state, current_tf_question_idx],
outputs=[current_tf_question_idx, tf_question, tf_choices,
tf_feedback, tf_next]
)
fitb_submit_typed.click(
submit_fill_in_the_blank_wrapper,
inputs=[global_session, quiz_data_state, current_fitb_question_idx,
fitb_answer, ai_provider_quiz, model_name_quiz, api_key_quiz],
outputs=[fitb_feedback, fitb_next]
)
fitb_next_typed.click(
next_fill_in_the_blank_question,
inputs=[quiz_data_state, current_fitb_question_idx],
outputs=[current_fitb_question_idx, fitb_question, fitb_answer,
fitb_feedback, fitb_next]
)
save_session_btn_typed.click(
save_session_wrapper,
inputs=[global_session, session_name_input],
outputs=[global_session, session_status, saved_sessions_dropdown]
)
load_session_btn_typed.click(
load_session_wrapper,
inputs=[saved_sessions_dropdown],
outputs=[global_session, session_status,
unit_dropdown, learn_unit_dropdown, quiz_unit_dropdown,
units_display, overall_stats, in_progress_stats, average_score_stats, overall_progress, progress_df]
)
export_markdown_btn_typed.click(
export_markdown_wrapper,
inputs=[global_session],
outputs=[export_file, export_status, export_file]
)
export_html_btn_typed.click(
export_html_wrapper,
inputs=[global_session],
outputs=[export_file, export_status, export_file]
)
export_pdf_btn_typed.click(
export_pdf_wrapper,
inputs=[global_session],
outputs=[export_file, export_status, export_file]
)
tabs_typed.select(
handle_tab_change,
inputs=[global_session, quiz_data_state],
outputs=[
global_session, overall_stats, in_progress_stats, average_score_stats, overall_progress, progress_df,
explanation_container, explanation_data_state, current_code_examples,
quiz_container, current_unit_info, learn_unit_dropdown,
saved_sessions_dropdown, mcq_section, open_ended_section,
tf_section, fitb_section
]
)
return app
if __name__ == "__main__":
# The build is meant as a roundabout way for huggingface gradio template
APP_ROOT = Path(__file__).resolve().parent
MCP_DIR = APP_ROOT / 'mcp_server' / 'learnflow-mcp-server'
BUILD_DIR = MCP_DIR / 'build'
MCP_SERVER_PATH = BUILD_DIR / 'index.js'
LEARNFLOW_AI_ROOT = str(APP_ROOT)
# === MCP Build ===
def build_mcp_server():
if BUILD_DIR.exists():
logging.info(f"MCP build already exists at {BUILD_DIR}")
return True
logging.info(f"MCP build not found at {BUILD_DIR}, starting build process...")
try:
subprocess.run(["npm", "install"], cwd=str(MCP_DIR), check=True)
subprocess.run(["npm", "run", "build"], cwd=str(MCP_DIR), check=True)
logging.info("MCP server built successfully.")
return True
except subprocess.CalledProcessError as e:
logging.error(f"MCP build failed: {e}")
return False
except FileNotFoundError:
logging.error("npm not found. Ensure Node.js is installed in your environment.")
return False
# === MCP Launch ===
def launch_mcp_server():
logging.info(f"Attempting to launch MCP server from: {MCP_SERVER_PATH}")
logging.info(f"Setting LEARNFLOW_AI_ROOT to: {LEARNFLOW_AI_ROOT}")
if not BUILD_DIR.exists():
logging.error(f"MCP server build directory not found: {BUILD_DIR}")
return
env = os.environ.copy()
env['LEARNFLOW_AI_ROOT'] = LEARNFLOW_AI_ROOT
try:
process = subprocess.Popen(
['node', str(MCP_SERVER_PATH)],
env=env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
creationflags=subprocess.CREATE_NO_WINDOW if os.name == 'nt' else 0
)
logging.info(f"MCP server process started with PID: {process.pid}")
def log_stdout():
for line in process.stdout:
logging.info(f"MCP STDOUT: {line.strip()}")
def log_stderr():
for line in process.stderr:
logging.error(f"MCP STDERR: {line.strip()}")
threading.Thread(target=log_stdout, daemon=True).start()
threading.Thread(target=log_stderr, daemon=True).start()
global mcp_server_process
mcp_server_process = process
except FileNotFoundError:
logging.error("Node.js executable not found. Please ensure Node.js is installed and in your PATH.")
except Exception as e:
logging.error(f"Failed to launch MCP server: {e}")
if not build_mcp_server():
logging.error("Build failed. Aborting.")
sys.exit(1)
# Launch the MCP server in a separate thread
mcp_thread = threading.Thread(target=launch_mcp_server, daemon=True)
mcp_thread.start()
time.sleep(5)
app = create_app()
app.launch()