Spaces:
Sleeping
Sleeping
feat: Add dynamic weather system to Evolution Aurora
Browse files- Lightning strikes on major fitness improvements (>0.005)
- Rain effect when evolution plateaus (<0.002 improvement)
- Rainbow appears when reaching 95% fitness milestone
- Integrated with existing particle and neural network systems
- Weather renders as background layer for proper visual hierarchy
app.py
CHANGED
@@ -61,7 +61,7 @@ AURORA_HTML = """
|
|
61 |
Watch AI Learn to Code in Real-Time
|
62 |
</p>
|
63 |
<p id="welcome-msg" style="color: #00AAFF; font-size: 20px; margin-top: 20px; opacity: 0; animation: fadeIn 2s ease-in 2s forwards;">
|
64 |
-
|
65 |
</p>
|
66 |
</div>
|
67 |
</div>
|
@@ -91,6 +91,13 @@ AURORA_HTML = """
|
|
91 |
const canvas = document.getElementById('aurora-canvas');
|
92 |
const ctx = canvas.getContext('2d');
|
93 |
let particles = [];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
function resizeCanvas() {
|
96 |
canvas.width = canvas.offsetWidth;
|
@@ -337,11 +344,152 @@ canvas.addEventListener('click', (e) => {
|
|
337 |
}
|
338 |
});
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
function animate() {
|
341 |
ctx.fillStyle = 'rgba(0, 0, 0, 0.1)';
|
342 |
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
343 |
|
344 |
-
// Draw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
drawBoss();
|
346 |
|
347 |
// Mouse glow effect
|
@@ -352,6 +500,7 @@ function animate() {
|
|
352 |
ctx.fillStyle = gradient;
|
353 |
ctx.fillRect(mouseX - 100, mouseY - 100, 200, 200);
|
354 |
|
|
|
355 |
particles = particles.filter(p => {
|
356 |
p.update();
|
357 |
p.draw();
|
@@ -486,12 +635,57 @@ const watchQuantum = new MutationObserver((mutations) => {
|
|
486 |
triggerGlitch();
|
487 |
speak("Victory! You have achieved perfection! 100 percent fitness!", 1.2, 1.2);
|
488 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
});
|
490 |
});
|
491 |
|
492 |
setTimeout(() => {
|
493 |
const eventLog = document.querySelector('[id*="event_log"]');
|
494 |
if (eventLog) watchQuantum.observe(eventLog, { childList: true, subtree: true });
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
}, 2000);
|
496 |
|
497 |
// Epic initial burst sequence
|
@@ -503,6 +697,359 @@ setTimeout(() => {
|
|
503 |
setTimeout(() => createBurst(3), 1500);
|
504 |
setTimeout(() => createBurst(4), 2500);
|
505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
// Mouse interaction
|
507 |
let mouseX = canvas.width / 2;
|
508 |
let mouseY = canvas.height / 2;
|
@@ -1043,7 +1590,7 @@ with gr.Blocks(
|
|
1043 |
gr.Markdown("""
|
1044 |
# π Evolution Aurora - AI Learning to Code
|
1045 |
|
1046 |
-
Watch as AI evolves code in real-time
|
1047 |
""")
|
1048 |
gr.HTML('''
|
1049 |
<div style="text-align: right; padding: 10px;">
|
|
|
61 |
Watch AI Learn to Code in Real-Time
|
62 |
</p>
|
63 |
<p id="welcome-msg" style="color: #00AAFF; font-size: 20px; margin-top: 20px; opacity: 0; animation: fadeIn 2s ease-in 2s forwards;">
|
64 |
+
π§ Neural Network Visualization | π Synapses Fire with Each Improvement
|
65 |
</p>
|
66 |
</div>
|
67 |
</div>
|
|
|
91 |
const canvas = document.getElementById('aurora-canvas');
|
92 |
const ctx = canvas.getContext('2d');
|
93 |
let particles = [];
|
94 |
+
let weatherSystem = {
|
95 |
+
raindrops: [],
|
96 |
+
lightning: false,
|
97 |
+
lightningTimer: 0,
|
98 |
+
rainbow: false,
|
99 |
+
rainbowOpacity: 0
|
100 |
+
};
|
101 |
|
102 |
function resizeCanvas() {
|
103 |
canvas.width = canvas.offsetWidth;
|
|
|
344 |
}
|
345 |
});
|
346 |
|
347 |
+
// Track current fitness for neural network
|
348 |
+
let currentFitness = 0.9333;
|
349 |
+
|
350 |
+
// Weather System
|
351 |
+
class Raindrop {
|
352 |
+
constructor() {
|
353 |
+
this.x = Math.random() * canvas.width;
|
354 |
+
this.y = -10;
|
355 |
+
this.speed = Math.random() * 5 + 10;
|
356 |
+
this.length = Math.random() * 20 + 10;
|
357 |
+
this.opacity = Math.random() * 0.5 + 0.3;
|
358 |
+
}
|
359 |
+
|
360 |
+
update() {
|
361 |
+
this.y += this.speed;
|
362 |
+
if (this.y > canvas.height) {
|
363 |
+
this.y = -10;
|
364 |
+
this.x = Math.random() * canvas.width;
|
365 |
+
}
|
366 |
+
}
|
367 |
+
|
368 |
+
draw() {
|
369 |
+
ctx.save();
|
370 |
+
ctx.strokeStyle = `rgba(100, 150, 255, ${this.opacity})`;
|
371 |
+
ctx.lineWidth = 1;
|
372 |
+
ctx.beginPath();
|
373 |
+
ctx.moveTo(this.x, this.y);
|
374 |
+
ctx.lineTo(this.x, this.y + this.length);
|
375 |
+
ctx.stroke();
|
376 |
+
ctx.restore();
|
377 |
+
}
|
378 |
+
}
|
379 |
+
|
380 |
+
function drawWeather() {
|
381 |
+
// Rain effect
|
382 |
+
weatherSystem.raindrops.forEach(drop => {
|
383 |
+
drop.update();
|
384 |
+
drop.draw();
|
385 |
+
});
|
386 |
+
|
387 |
+
// Lightning effect
|
388 |
+
if (weatherSystem.lightning && weatherSystem.lightningTimer > 0) {
|
389 |
+
ctx.save();
|
390 |
+
ctx.fillStyle = `rgba(255, 255, 255, ${weatherSystem.lightningTimer / 10})`;
|
391 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
392 |
+
|
393 |
+
// Draw lightning bolt
|
394 |
+
if (weatherSystem.lightningTimer > 5) {
|
395 |
+
ctx.strokeStyle = '#FFFFFF';
|
396 |
+
ctx.lineWidth = 3;
|
397 |
+
ctx.shadowBlur = 20;
|
398 |
+
ctx.shadowColor = '#00AAFF';
|
399 |
+
|
400 |
+
const startX = Math.random() * canvas.width;
|
401 |
+
const segments = 5;
|
402 |
+
let x = startX;
|
403 |
+
let y = 0;
|
404 |
+
|
405 |
+
ctx.beginPath();
|
406 |
+
ctx.moveTo(x, y);
|
407 |
+
|
408 |
+
for (let i = 0; i < segments; i++) {
|
409 |
+
x += (Math.random() - 0.5) * 100;
|
410 |
+
y += canvas.height / segments;
|
411 |
+
ctx.lineTo(x, y);
|
412 |
+
}
|
413 |
+
|
414 |
+
ctx.stroke();
|
415 |
+
}
|
416 |
+
|
417 |
+
ctx.restore();
|
418 |
+
weatherSystem.lightningTimer--;
|
419 |
+
}
|
420 |
+
|
421 |
+
// Rainbow effect
|
422 |
+
if (weatherSystem.rainbow && weatherSystem.rainbowOpacity > 0) {
|
423 |
+
ctx.save();
|
424 |
+
const gradient = ctx.createLinearGradient(0, 0, canvas.width, canvas.height / 2);
|
425 |
+
const colors = ['#FF0000', '#FF7F00', '#FFFF00', '#00FF00', '#0000FF', '#4B0082', '#9400D3'];
|
426 |
+
|
427 |
+
colors.forEach((color, i) => {
|
428 |
+
gradient.addColorStop(i / (colors.length - 1), color);
|
429 |
+
});
|
430 |
+
|
431 |
+
ctx.fillStyle = gradient;
|
432 |
+
ctx.globalAlpha = weatherSystem.rainbowOpacity;
|
433 |
+
ctx.beginPath();
|
434 |
+
ctx.arc(canvas.width / 2, canvas.height, canvas.width, 0, Math.PI, true);
|
435 |
+
ctx.fill();
|
436 |
+
ctx.restore();
|
437 |
+
}
|
438 |
+
}
|
439 |
+
|
440 |
+
function triggerLightning() {
|
441 |
+
weatherSystem.lightning = true;
|
442 |
+
weatherSystem.lightningTimer = 10;
|
443 |
+
|
444 |
+
// Create burst at lightning strike point
|
445 |
+
createBurst(3);
|
446 |
+
}
|
447 |
+
|
448 |
+
function startRain() {
|
449 |
+
// Create raindrops
|
450 |
+
for (let i = 0; i < 50; i++) {
|
451 |
+
weatherSystem.raindrops.push(new Raindrop());
|
452 |
+
}
|
453 |
+
}
|
454 |
+
|
455 |
+
function stopRain() {
|
456 |
+
weatherSystem.raindrops = [];
|
457 |
+
}
|
458 |
+
|
459 |
+
function showRainbow() {
|
460 |
+
weatherSystem.rainbow = true;
|
461 |
+
// Fade in
|
462 |
+
const fadeIn = setInterval(() => {
|
463 |
+
weatherSystem.rainbowOpacity += 0.02;
|
464 |
+
if (weatherSystem.rainbowOpacity >= 0.3) {
|
465 |
+
clearInterval(fadeIn);
|
466 |
+
// Fade out after 3 seconds
|
467 |
+
setTimeout(() => {
|
468 |
+
const fadeOut = setInterval(() => {
|
469 |
+
weatherSystem.rainbowOpacity -= 0.02;
|
470 |
+
if (weatherSystem.rainbowOpacity <= 0) {
|
471 |
+
weatherSystem.rainbow = false;
|
472 |
+
weatherSystem.rainbowOpacity = 0;
|
473 |
+
clearInterval(fadeOut);
|
474 |
+
}
|
475 |
+
}, 50);
|
476 |
+
}, 3000);
|
477 |
+
}
|
478 |
+
}, 50);
|
479 |
+
}
|
480 |
+
|
481 |
function animate() {
|
482 |
ctx.fillStyle = 'rgba(0, 0, 0, 0.1)';
|
483 |
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
484 |
|
485 |
+
// Draw weather effects first (background)
|
486 |
+
drawWeather();
|
487 |
+
|
488 |
+
// Draw neural network (middle layer)
|
489 |
+
neuralNetwork.update(currentFitness);
|
490 |
+
neuralNetwork.draw(ctx);
|
491 |
+
|
492 |
+
// Draw boss (above neural network)
|
493 |
drawBoss();
|
494 |
|
495 |
// Mouse glow effect
|
|
|
500 |
ctx.fillStyle = gradient;
|
501 |
ctx.fillRect(mouseX - 100, mouseY - 100, 200, 200);
|
502 |
|
503 |
+
// Draw particles (foreground layer)
|
504 |
particles = particles.filter(p => {
|
505 |
p.update();
|
506 |
p.draw();
|
|
|
635 |
triggerGlitch();
|
636 |
speak("Victory! You have achieved perfection! 100 percent fitness!", 1.2, 1.2);
|
637 |
}
|
638 |
+
|
639 |
+
// Check for fitness updates
|
640 |
+
const fitnessMatch = text.match(/Fitness (\d+\.\d+)/);
|
641 |
+
if (fitnessMatch) {
|
642 |
+
const newFitness = parseFloat(fitnessMatch[1]);
|
643 |
+
if (newFitness > currentFitness) {
|
644 |
+
const improvement = newFitness - currentFitness;
|
645 |
+
currentFitness = newFitness;
|
646 |
+
// Trigger neural network firing
|
647 |
+
neuralNetwork.triggerFitnessImprovement(improvement);
|
648 |
+
|
649 |
+
// Weather effects based on improvement
|
650 |
+
if (improvement > 0.005) {
|
651 |
+
triggerLightning(); // Lightning for major improvements
|
652 |
+
}
|
653 |
+
|
654 |
+
// Rainbow at 95%
|
655 |
+
if (newFitness >= 0.95 && currentFitness < 0.96) {
|
656 |
+
showRainbow();
|
657 |
+
stopRain();
|
658 |
+
}
|
659 |
+
|
660 |
+
// Rain when plateauing
|
661 |
+
if (improvement < 0.002 && weatherSystem.raindrops.length === 0) {
|
662 |
+
startRain();
|
663 |
+
}
|
664 |
+
}
|
665 |
+
}
|
666 |
});
|
667 |
});
|
668 |
|
669 |
setTimeout(() => {
|
670 |
const eventLog = document.querySelector('[id*="event_log"]');
|
671 |
if (eventLog) watchQuantum.observe(eventLog, { childList: true, subtree: true });
|
672 |
+
|
673 |
+
// Also watch fitness display directly
|
674 |
+
const fitnessDisplay = document.querySelector('[id*="fitness_display"]');
|
675 |
+
if (fitnessDisplay) {
|
676 |
+
const fitnessObserver = new MutationObserver((mutations) => {
|
677 |
+
mutations.forEach((mutation) => {
|
678 |
+
const input = mutation.target.querySelector('input');
|
679 |
+
if (input && input.value) {
|
680 |
+
const newFitness = parseFloat(input.value);
|
681 |
+
if (!isNaN(newFitness) && newFitness !== currentFitness) {
|
682 |
+
currentFitness = newFitness;
|
683 |
+
}
|
684 |
+
}
|
685 |
+
});
|
686 |
+
});
|
687 |
+
fitnessObserver.observe(fitnessDisplay, { childList: true, subtree: true, attributes: true });
|
688 |
+
}
|
689 |
}, 2000);
|
690 |
|
691 |
// Epic initial burst sequence
|
|
|
697 |
setTimeout(() => createBurst(3), 1500);
|
698 |
setTimeout(() => createBurst(4), 2500);
|
699 |
|
700 |
+
// Neural Network Visualization
|
701 |
+
class NeuralNetwork {
|
702 |
+
constructor() {
|
703 |
+
this.neurons = [];
|
704 |
+
this.synapses = [];
|
705 |
+
this.layers = [5, 8, 6, 4, 1]; // Network architecture
|
706 |
+
this.setupNetwork();
|
707 |
+
this.pulsePhase = 0;
|
708 |
+
this.lastFitness = 0.9333;
|
709 |
+
this.firingNeurons = new Set();
|
710 |
+
this.brainWavePhase = 0;
|
711 |
+
}
|
712 |
+
|
713 |
+
setupNetwork() {
|
714 |
+
const centerX = canvas.width / 2;
|
715 |
+
const centerY = canvas.height / 2;
|
716 |
+
const networkWidth = 400;
|
717 |
+
const networkHeight = 300;
|
718 |
+
|
719 |
+
// Create neurons for each layer
|
720 |
+
for (let layer = 0; layer < this.layers.length; layer++) {
|
721 |
+
const layerNeurons = [];
|
722 |
+
const x = centerX - networkWidth/2 + (layer / (this.layers.length - 1)) * networkWidth;
|
723 |
+
|
724 |
+
for (let i = 0; i < this.layers[layer]; i++) {
|
725 |
+
const y = centerY - networkHeight/2 + ((i + 0.5) / this.layers[layer]) * networkHeight;
|
726 |
+
layerNeurons.push({
|
727 |
+
x: x,
|
728 |
+
y: y,
|
729 |
+
layer: layer,
|
730 |
+
index: i,
|
731 |
+
activation: Math.random() * 0.3,
|
732 |
+
pulseOffset: Math.random() * Math.PI * 2,
|
733 |
+
size: layer === this.layers.length - 1 ? 15 : 8 - layer // Output neuron is bigger
|
734 |
+
});
|
735 |
+
}
|
736 |
+
this.neurons.push(layerNeurons);
|
737 |
+
}
|
738 |
+
|
739 |
+
// Create synapses between layers
|
740 |
+
for (let layer = 0; layer < this.layers.length - 1; layer++) {
|
741 |
+
for (let i = 0; i < this.neurons[layer].length; i++) {
|
742 |
+
for (let j = 0; j < this.neurons[layer + 1].length; j++) {
|
743 |
+
this.synapses.push({
|
744 |
+
from: this.neurons[layer][i],
|
745 |
+
to: this.neurons[layer + 1][j],
|
746 |
+
weight: Math.random() * 0.5 + 0.1,
|
747 |
+
active: false,
|
748 |
+
pulseProgress: 0
|
749 |
+
});
|
750 |
+
}
|
751 |
+
}
|
752 |
+
}
|
753 |
+
}
|
754 |
+
|
755 |
+
update(currentFitness) {
|
756 |
+
this.pulsePhase += 0.02;
|
757 |
+
this.brainWavePhase += 0.015;
|
758 |
+
|
759 |
+
// Check if fitness improved
|
760 |
+
const fitnessImproved = currentFitness > this.lastFitness + 0.0001;
|
761 |
+
|
762 |
+
if (fitnessImproved) {
|
763 |
+
// Activate firing sequence
|
764 |
+
this.triggerFitnessImprovement(currentFitness - this.lastFitness);
|
765 |
+
}
|
766 |
+
|
767 |
+
this.lastFitness = currentFitness;
|
768 |
+
|
769 |
+
// Update neuron activations with brain wave effect
|
770 |
+
for (let layer of this.neurons) {
|
771 |
+
for (let neuron of layer) {
|
772 |
+
// Base pulsing
|
773 |
+
neuron.activation = 0.3 + 0.2 * Math.sin(this.pulsePhase + neuron.pulseOffset);
|
774 |
+
|
775 |
+
// Add brain wave effect
|
776 |
+
const waveInfluence = Math.sin(this.brainWavePhase + neuron.x * 0.01 + neuron.y * 0.01) * 0.2;
|
777 |
+
neuron.activation += waveInfluence;
|
778 |
+
|
779 |
+
// Firing neurons glow brighter
|
780 |
+
if (this.firingNeurons.has(neuron)) {
|
781 |
+
neuron.activation = Math.min(1, neuron.activation + 0.5);
|
782 |
+
}
|
783 |
+
}
|
784 |
+
}
|
785 |
+
|
786 |
+
// Update synapses
|
787 |
+
for (let synapse of this.synapses) {
|
788 |
+
if (synapse.active) {
|
789 |
+
synapse.pulseProgress += 0.05;
|
790 |
+
if (synapse.pulseProgress >= 1) {
|
791 |
+
synapse.active = false;
|
792 |
+
synapse.pulseProgress = 0;
|
793 |
+
// Activate the target neuron
|
794 |
+
this.firingNeurons.add(synapse.to);
|
795 |
+
setTimeout(() => this.firingNeurons.delete(synapse.to), 500);
|
796 |
+
}
|
797 |
+
}
|
798 |
+
}
|
799 |
+
}
|
800 |
+
|
801 |
+
triggerFitnessImprovement(improvement) {
|
802 |
+
// Fire neurons based on improvement magnitude
|
803 |
+
const fireCount = Math.min(20, Math.floor(improvement * 1000));
|
804 |
+
|
805 |
+
// Major milestone effects
|
806 |
+
if (this.lastFitness >= 0.95 && this.lastFitness < 0.95 + improvement) {
|
807 |
+
// 95% milestone - neural storm
|
808 |
+
this.triggerNeuralStorm();
|
809 |
+
}
|
810 |
+
if (this.lastFitness >= 0.99 && this.lastFitness < 0.99 + improvement) {
|
811 |
+
// 99% milestone - neural overload
|
812 |
+
this.triggerNeuralOverload();
|
813 |
+
}
|
814 |
+
|
815 |
+
// Start with random input neurons
|
816 |
+
for (let i = 0; i < fireCount; i++) {
|
817 |
+
const neuron = this.neurons[0][Math.floor(Math.random() * this.neurons[0].length)];
|
818 |
+
this.firingNeurons.add(neuron);
|
819 |
+
|
820 |
+
// Propagate through network
|
821 |
+
setTimeout(() => {
|
822 |
+
this.propagateActivation(neuron);
|
823 |
+
}, i * 50);
|
824 |
+
}
|
825 |
+
|
826 |
+
// Create synapse firing wave
|
827 |
+
const synapsesToFire = this.synapses.filter(s => Math.random() < improvement * 50);
|
828 |
+
synapsesToFire.forEach((synapse, i) => {
|
829 |
+
setTimeout(() => {
|
830 |
+
synapse.active = true;
|
831 |
+
synapse.pulseProgress = 0;
|
832 |
+
}, i * 20);
|
833 |
+
});
|
834 |
+
}
|
835 |
+
|
836 |
+
triggerNeuralStorm() {
|
837 |
+
// Fire all neurons in waves
|
838 |
+
for (let layer = 0; layer < this.neurons.length; layer++) {
|
839 |
+
setTimeout(() => {
|
840 |
+
this.neurons[layer].forEach(neuron => {
|
841 |
+
this.firingNeurons.add(neuron);
|
842 |
+
setTimeout(() => this.firingNeurons.delete(neuron), 1000);
|
843 |
+
});
|
844 |
+
}, layer * 200);
|
845 |
+
}
|
846 |
+
|
847 |
+
// Activate many synapses
|
848 |
+
this.synapses.forEach((synapse, i) => {
|
849 |
+
if (Math.random() < 0.7) {
|
850 |
+
setTimeout(() => {
|
851 |
+
synapse.active = true;
|
852 |
+
synapse.pulseProgress = 0;
|
853 |
+
}, Math.random() * 1000);
|
854 |
+
}
|
855 |
+
});
|
856 |
+
}
|
857 |
+
|
858 |
+
triggerNeuralOverload() {
|
859 |
+
// Extreme effect - all neurons and synapses fire rapidly
|
860 |
+
const overloadDuration = 3000;
|
861 |
+
const overloadInterval = setInterval(() => {
|
862 |
+
// Random neurons fire
|
863 |
+
for (let i = 0; i < 10; i++) {
|
864 |
+
const layer = Math.floor(Math.random() * this.neurons.length);
|
865 |
+
const index = Math.floor(Math.random() * this.neurons[layer].length);
|
866 |
+
const neuron = this.neurons[layer][index];
|
867 |
+
this.firingNeurons.add(neuron);
|
868 |
+
setTimeout(() => this.firingNeurons.delete(neuron), 200);
|
869 |
+
}
|
870 |
+
|
871 |
+
// Random synapses fire
|
872 |
+
for (let i = 0; i < 20; i++) {
|
873 |
+
const synapse = this.synapses[Math.floor(Math.random() * this.synapses.length)];
|
874 |
+
synapse.active = true;
|
875 |
+
synapse.pulseProgress = 0;
|
876 |
+
}
|
877 |
+
}, 100);
|
878 |
+
|
879 |
+
setTimeout(() => clearInterval(overloadInterval), overloadDuration);
|
880 |
+
}
|
881 |
+
|
882 |
+
propagateActivation(neuron) {
|
883 |
+
// Find synapses from this neuron
|
884 |
+
const outgoingSynapses = this.synapses.filter(s => s.from === neuron);
|
885 |
+
|
886 |
+
outgoingSynapses.forEach((synapse, i) => {
|
887 |
+
setTimeout(() => {
|
888 |
+
synapse.active = true;
|
889 |
+
synapse.pulseProgress = 0;
|
890 |
+
}, i * 100);
|
891 |
+
});
|
892 |
+
}
|
893 |
+
|
894 |
+
draw(ctx) {
|
895 |
+
ctx.save();
|
896 |
+
|
897 |
+
// Set overall neural network opacity
|
898 |
+
ctx.globalAlpha = 0.7;
|
899 |
+
|
900 |
+
// Draw brain scan background effect
|
901 |
+
this.drawBrainScan(ctx);
|
902 |
+
|
903 |
+
// Draw synapses
|
904 |
+
for (let synapse of this.synapses) {
|
905 |
+
ctx.save();
|
906 |
+
|
907 |
+
const baseAlpha = 0.2 + synapse.weight * 0.3;
|
908 |
+
ctx.globalAlpha = synapse.active ? Math.min(1, baseAlpha + 0.6) : baseAlpha;
|
909 |
+
|
910 |
+
// Draw synapse line
|
911 |
+
ctx.beginPath();
|
912 |
+
ctx.moveTo(synapse.from.x, synapse.from.y);
|
913 |
+
ctx.lineTo(synapse.to.x, synapse.to.y);
|
914 |
+
|
915 |
+
const gradient = ctx.createLinearGradient(
|
916 |
+
synapse.from.x, synapse.from.y,
|
917 |
+
synapse.to.x, synapse.to.y
|
918 |
+
);
|
919 |
+
|
920 |
+
if (synapse.active) {
|
921 |
+
// Firing synapse - animated pulse
|
922 |
+
const pulsePos = synapse.pulseProgress;
|
923 |
+
gradient.addColorStop(0, 'rgba(0, 255, 136, 0.1)');
|
924 |
+
gradient.addColorStop(Math.max(0, pulsePos - 0.1), 'rgba(0, 255, 136, 0.1)');
|
925 |
+
gradient.addColorStop(pulsePos, 'rgba(255, 255, 255, 1)');
|
926 |
+
gradient.addColorStop(Math.min(1, pulsePos + 0.1), 'rgba(0, 255, 136, 0.1)');
|
927 |
+
gradient.addColorStop(1, 'rgba(123, 63, 242, 0.1)');
|
928 |
+
|
929 |
+
ctx.lineWidth = 3;
|
930 |
+
ctx.shadowBlur = 20;
|
931 |
+
ctx.shadowColor = '#00FF88';
|
932 |
+
} else {
|
933 |
+
gradient.addColorStop(0, 'rgba(0, 170, 255, 0.2)');
|
934 |
+
gradient.addColorStop(1, 'rgba(123, 63, 242, 0.2)');
|
935 |
+
ctx.lineWidth = 1;
|
936 |
+
}
|
937 |
+
|
938 |
+
ctx.strokeStyle = gradient;
|
939 |
+
ctx.stroke();
|
940 |
+
ctx.restore();
|
941 |
+
}
|
942 |
+
|
943 |
+
// Draw neurons
|
944 |
+
for (let layer of this.neurons) {
|
945 |
+
for (let neuron of layer) {
|
946 |
+
ctx.save();
|
947 |
+
|
948 |
+
const isFiring = this.firingNeurons.has(neuron);
|
949 |
+
const isOutput = neuron.layer === this.layers.length - 1;
|
950 |
+
|
951 |
+
// Neuron glow
|
952 |
+
if (isFiring || isOutput) {
|
953 |
+
const glowGradient = ctx.createRadialGradient(
|
954 |
+
neuron.x, neuron.y, 0,
|
955 |
+
neuron.x, neuron.y, neuron.size * 3
|
956 |
+
);
|
957 |
+
glowGradient.addColorStop(0, isFiring ? 'rgba(255, 255, 255, 0.5)' : 'rgba(255, 215, 0, 0.3)');
|
958 |
+
glowGradient.addColorStop(0.5, isFiring ? 'rgba(0, 255, 136, 0.3)' : 'rgba(255, 215, 0, 0.1)');
|
959 |
+
glowGradient.addColorStop(1, 'rgba(0, 0, 0, 0)');
|
960 |
+
|
961 |
+
ctx.fillStyle = glowGradient;
|
962 |
+
ctx.fillRect(neuron.x - neuron.size * 3, neuron.y - neuron.size * 3,
|
963 |
+
neuron.size * 6, neuron.size * 6);
|
964 |
+
}
|
965 |
+
|
966 |
+
// Neuron body
|
967 |
+
ctx.beginPath();
|
968 |
+
ctx.arc(neuron.x, neuron.y, neuron.size, 0, Math.PI * 2);
|
969 |
+
|
970 |
+
const neuronGradient = ctx.createRadialGradient(
|
971 |
+
neuron.x - neuron.size/3, neuron.y - neuron.size/3, 0,
|
972 |
+
neuron.x, neuron.y, neuron.size
|
973 |
+
);
|
974 |
+
|
975 |
+
if (isOutput) {
|
976 |
+
// Output neuron - golden
|
977 |
+
neuronGradient.addColorStop(0, '#FFD700');
|
978 |
+
neuronGradient.addColorStop(1, '#FFA500');
|
979 |
+
} else if (isFiring) {
|
980 |
+
// Firing neuron - bright white/green
|
981 |
+
neuronGradient.addColorStop(0, '#FFFFFF');
|
982 |
+
neuronGradient.addColorStop(1, '#00FF88');
|
983 |
+
} else {
|
984 |
+
// Normal neuron - blue/purple gradient
|
985 |
+
const brightness = neuron.activation;
|
986 |
+
neuronGradient.addColorStop(0, `rgba(0, 170, 255, ${brightness})`);
|
987 |
+
neuronGradient.addColorStop(1, `rgba(123, 63, 242, ${brightness * 0.7})`);
|
988 |
+
}
|
989 |
+
|
990 |
+
ctx.fillStyle = neuronGradient;
|
991 |
+
ctx.fill();
|
992 |
+
|
993 |
+
// Neuron outline
|
994 |
+
ctx.strokeStyle = isFiring ? '#FFFFFF' : 'rgba(255, 255, 255, 0.2)';
|
995 |
+
ctx.lineWidth = isFiring ? 2 : 1;
|
996 |
+
ctx.stroke();
|
997 |
+
|
998 |
+
ctx.restore();
|
999 |
+
}
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
ctx.restore();
|
1003 |
+
}
|
1004 |
+
|
1005 |
+
drawBrainScan(ctx) {
|
1006 |
+
// Brain scan effect - concentric circles emanating from center
|
1007 |
+
const centerX = canvas.width / 2;
|
1008 |
+
const centerY = canvas.height / 2;
|
1009 |
+
|
1010 |
+
ctx.save();
|
1011 |
+
|
1012 |
+
// Draw multiple scan waves
|
1013 |
+
for (let i = 0; i < 5; i++) {
|
1014 |
+
const radius = (this.brainWavePhase * 100 + i * 100) % 500;
|
1015 |
+
const alpha = Math.max(0, 1 - radius / 500) * 0.3;
|
1016 |
+
|
1017 |
+
ctx.beginPath();
|
1018 |
+
ctx.arc(centerX, centerY, radius, 0, Math.PI * 2);
|
1019 |
+
|
1020 |
+
// Create gradient stroke
|
1021 |
+
const gradient = ctx.createRadialGradient(centerX, centerY, radius - 10, centerX, centerY, radius + 10);
|
1022 |
+
gradient.addColorStop(0, `rgba(0, 255, 136, 0)`);
|
1023 |
+
gradient.addColorStop(0.5, `rgba(0, 255, 136, ${alpha})`);
|
1024 |
+
gradient.addColorStop(1, `rgba(123, 63, 242, 0)`);
|
1025 |
+
|
1026 |
+
ctx.strokeStyle = gradient;
|
1027 |
+
ctx.lineWidth = 3;
|
1028 |
+
ctx.stroke();
|
1029 |
+
}
|
1030 |
+
|
1031 |
+
// Add "thinking" pulses randomly
|
1032 |
+
if (Math.random() < 0.05) {
|
1033 |
+
// Random thinking pulse
|
1034 |
+
const pulseX = centerX + (Math.random() - 0.5) * 300;
|
1035 |
+
const pulseY = centerY + (Math.random() - 0.5) * 200;
|
1036 |
+
|
1037 |
+
const pulseGradient = ctx.createRadialGradient(pulseX, pulseY, 0, pulseX, pulseY, 50);
|
1038 |
+
pulseGradient.addColorStop(0, 'rgba(255, 255, 255, 0.4)');
|
1039 |
+
pulseGradient.addColorStop(0.5, 'rgba(0, 170, 255, 0.2)');
|
1040 |
+
pulseGradient.addColorStop(1, 'rgba(0, 0, 0, 0)');
|
1041 |
+
|
1042 |
+
ctx.fillStyle = pulseGradient;
|
1043 |
+
ctx.fillRect(pulseX - 50, pulseY - 50, 100, 100);
|
1044 |
+
}
|
1045 |
+
|
1046 |
+
ctx.restore();
|
1047 |
+
}
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
// Initialize neural network
|
1051 |
+
const neuralNetwork = new NeuralNetwork();
|
1052 |
+
|
1053 |
// Mouse interaction
|
1054 |
let mouseX = canvas.width / 2;
|
1055 |
let mouseY = canvas.height / 2;
|
|
|
1590 |
gr.Markdown("""
|
1591 |
# π Evolution Aurora - AI Learning to Code
|
1592 |
|
1593 |
+
Watch as AI evolves code in real-time with neural network visualization! See synapses fire and neurons activate as the AI discovers improvements. The neural network shows the AI's "thoughts" as it learns.
|
1594 |
""")
|
1595 |
gr.HTML('''
|
1596 |
<div style="text-align: right; padding: 10px;">
|