Create orchestrator.py
Browse files- orchestrator.py +507 -0
orchestrator.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FILE: orchestrator.py
|
2 |
+
# (Corrected Imports and Module Instantiation)
|
3 |
+
|
4 |
+
import logging
|
5 |
+
import json
|
6 |
+
from typing import List, Dict, Any, Tuple, Optional
|
7 |
+
import dspy
|
8 |
+
|
9 |
+
# --- 1. Corrected Imports from Project Modules ---
|
10 |
+
|
11 |
+
# Import the constants defined in config.py using a correct relative import.
|
12 |
+
# We no longer import the initialize_dspy function here.
|
13 |
+
from config import (
|
14 |
+
STATE_STAGE, STATE_HISTORY, STATE_FINAL_SYLLABUS, STATE_EXPLAINER_PROMPT,
|
15 |
+
STATE_EXPLANATION_START_INDEX, STATE_CURRENT_TITLE, STATE_GENERATED_TITLE,
|
16 |
+
STATE_RESOURCE_SUMMARY_OVERVIEW, STATE_RESOURCE_TYPE_FOR_SYLLABUS,
|
17 |
+
STATE_RESOURCE_CONTENT_JSON_FOR_SYLLABUS, STATE_DISPLAY_SYLLABUS_FLAG,
|
18 |
+
STATE_TRANSITION_EXPLAINER_FLAG, STAGE_START, STAGE_NEGOTIATING,
|
19 |
+
STAGE_EXPLAINING, STAGE_ERROR, DEFAULT_CHAT_TITLE,
|
20 |
+
TITLE_GENERATION_THRESHOLD, TITLE_MAX_HISTORY_SNIPPET_FOR_TITLE
|
21 |
+
)
|
22 |
+
|
23 |
+
# Import the synchronous DSPy modules and signatures.
|
24 |
+
from dspy_modules import (
|
25 |
+
ConversationManager,
|
26 |
+
SyllabusGeneratorRouter,
|
27 |
+
InitialResourceSummarizer,
|
28 |
+
DynamicResourceSummarizerModule,
|
29 |
+
LearningStyleQuestioner,
|
30 |
+
PersonaPromptGenerator,
|
31 |
+
ExplainerModule
|
32 |
+
)
|
33 |
+
from dspy_signatures import SyllabusFeedbackRequestSignature, FormatSyllabusXMLToMarkdown, TitleGenerationSignature
|
34 |
+
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
initial_summary_info = """
|
38 |
+
This Resource Summary is visible only to You (the agent/system) and not to the end-user.
|
39 |
+
It is provided for Your reference after the user has uploaded a resource.
|
40 |
+
This information is primarily for understanding the context of the user's resource.
|
41 |
+
For the syllabus, you should provide either the raw data or a dynamic summary.\n"""
|
42 |
+
|
43 |
+
if dspy.settings.lm:
|
44 |
+
CONVO_MANAGER = ConversationManager()
|
45 |
+
SYLLABUS_ROUTER = SyllabusGeneratorRouter()
|
46 |
+
INITIAL_RESOURCE_SUMMARIZER = InitialResourceSummarizer()
|
47 |
+
DYNAMIC_SUMMARIZER_MODULE = DynamicResourceSummarizerModule()
|
48 |
+
LEARNING_STYLE_QUESTIONER = LearningStyleQuestioner()
|
49 |
+
PERSONA_PROMPT_GENERATOR = PersonaPromptGenerator()
|
50 |
+
EXPLAINER_MODULE = ExplainerModule()
|
51 |
+
SYLLABUS_FEEDBACK_REQUESTER = dspy.Predict(SyllabusFeedbackRequestSignature, temperature=0.7)
|
52 |
+
SYLLABUS_XML_TO_MARKDOWN_FORMATTER = dspy.Predict(FormatSyllabusXMLToMarkdown, temperature=0.3)
|
53 |
+
TITLE_GENERATOR_PREDICTOR = dspy.Predict(TitleGenerationSignature, temperature=0.4)
|
54 |
+
logger.info("Orchestrator's DSPy modules initialized successfully.")
|
55 |
+
else:
|
56 |
+
logger.critical("Orchestrator loaded, but DSPy LM is NOT configured. This will cause errors when the orchestrator is called.")
|
57 |
+
# Set all modules to None so we can check for their existence and fail gracefully.
|
58 |
+
CONVO_MANAGER, SYLLABUS_ROUTER, INITIAL_RESOURCE_SUMMARIZER, DYNAMIC_SUMMARIZER_MODULE, \
|
59 |
+
LEARNING_STYLE_QUESTIONER, PERSONA_PROMPT_GENERATOR, EXPLAINER_MODULE, TITLE_GENERATOR_PREDICTOR, \
|
60 |
+
SYLLABUS_FEEDBACK_REQUESTER, SYLLABUS_XML_TO_MARKDOWN_FORMATTER = (None,) * 10
|
61 |
+
|
62 |
+
# --- Helper functions and the main process_chat_message function follow below ---
|
63 |
+
# (The rest of your file remains the same)
|
64 |
+
|
65 |
+
def format_history_for_dspy(history_list: List[Dict[str, Any]]) -> str:
|
66 |
+
formatted_history = []
|
67 |
+
for turn in history_list:
|
68 |
+
content = ""
|
69 |
+
if isinstance(turn.get('parts'), list) and turn['parts']:
|
70 |
+
content = turn['parts'][0]['text']
|
71 |
+
elif isinstance(turn.get('parts'), str):
|
72 |
+
content = turn['parts']
|
73 |
+
|
74 |
+
role = turn.get('role', 'unknown')
|
75 |
+
if role == 'model':
|
76 |
+
role = 'assistant' # Replace 'model' with 'assistant'
|
77 |
+
|
78 |
+
formatted_history.append(f"{role}: {content}")
|
79 |
+
return "\n---\n".join(formatted_history)
|
80 |
+
|
81 |
+
# The role part for model has been replaced with assistant for compatibility with litellm.
|
82 |
+
|
83 |
+
def get_last_syllabus_content_from_history(history: List[Dict[str, Any]]) -> Optional[str]:
|
84 |
+
|
85 |
+
logger.debug("Helper: Searching history backwards for last syllabus-typed message...")
|
86 |
+
if not history:
|
87 |
+
logger.warning("Helper: History is empty, cannot find syllabus.")
|
88 |
+
return None
|
89 |
+
|
90 |
+
for i in range(len(history) - 1, -1, -1):
|
91 |
+
message = history[i]
|
92 |
+
msg_role = message.get('role')
|
93 |
+
msg_type = message.get('message_type') # Get the message_type
|
94 |
+
|
95 |
+
logger.debug(f"Helper: Checking history index {i}, Role: '{msg_role}', Type: '{msg_type}'")
|
96 |
+
|
97 |
+
# We are looking for messages from 'model' or 'system' that are explicitly typed
|
98 |
+
# as either 'syllabus' (for old XML format) or 'syllabus_markdown' (for new Markdown format).
|
99 |
+
if msg_role in ['model', 'system'] and msg_type in ['syllabus', 'syllabus_markdown']:
|
100 |
+
content = ""
|
101 |
+
parts_list = message.get('parts', [])
|
102 |
+
|
103 |
+
if isinstance(parts_list, list) and len(parts_list) > 0:
|
104 |
+
first_part = parts_list[0]
|
105 |
+
if isinstance(first_part, dict):
|
106 |
+
content = first_part.get('text', '')
|
107 |
+
elif isinstance(first_part, str):
|
108 |
+
content = first_part
|
109 |
+
elif isinstance(parts_list, str): # Handle if 'parts' itself was saved as a string
|
110 |
+
content = parts_list
|
111 |
+
elif 'content' in message: # Fallback if structure is simpler like {'role': ..., 'content': ...}
|
112 |
+
logger.debug("Helper: 'parts' key not found or empty, trying 'content' key directly.")
|
113 |
+
if isinstance(message.get('content'), str):
|
114 |
+
content = message.get('content', '')
|
115 |
+
|
116 |
+
|
117 |
+
if content:
|
118 |
+
logger.info(f"Helper: FOUND syllabus content via message_type '{msg_type}' at index {i}. Content starts: '{content[:70]}...'")
|
119 |
+
return content.strip() # Return the full content of this message
|
120 |
+
else:
|
121 |
+
logger.warning(f"Helper: Found syllabus-typed message at index {i} but content was empty.")
|
122 |
+
# Continue searching
|
123 |
+
|
124 |
+
logger.warning("Helper: Finished searching history, did not find a valid syllabus-typed message with content.")
|
125 |
+
return None
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
# --- Main Orchestration Logic ---
|
131 |
+
def process_chat_message(
|
132 |
+
user_message_text: str,
|
133 |
+
current_session_state: Dict[str, Any],
|
134 |
+
modified_explainer_prompt: Optional[str] = None ,
|
135 |
+
uploaded_resource_data: Optional[Dict[str, str]] = None # Filename -> text content
|
136 |
+
) -> Tuple[str, Dict[str, Any]]:
|
137 |
+
"""
|
138 |
+
Processes user message using DSPy modules.
|
139 |
+
Handles initial resource processing if `uploaded_resource_data` is provided.
|
140 |
+
"""
|
141 |
+
if not CONVO_MANAGER:
|
142 |
+
logger.error("Orchestrator's DSPy modules are not initialized. Cannot process message.")
|
143 |
+
# Return an error state immediately
|
144 |
+
error_state = current_session_state.copy()
|
145 |
+
error_state[STATE_STAGE] = STAGE_ERROR
|
146 |
+
error_state[STATE_HISTORY].append({'role': 'user', 'parts': [{'text': user_message_text}]})
|
147 |
+
error_state[STATE_HISTORY].append({'role': 'model', 'parts': [{'text': "[FATAL ERROR: AI modules not initialized. Please contact support.]"}]})
|
148 |
+
return "[FATAL ERROR: AI modules not initialized]", error_state
|
149 |
+
|
150 |
+
|
151 |
+
new_state = current_session_state.copy()
|
152 |
+
new_state.pop(STATE_DISPLAY_SYLLABUS_FLAG, None)
|
153 |
+
new_state.pop(STATE_TRANSITION_EXPLAINER_FLAG, None)
|
154 |
+
new_state.pop(STATE_GENERATED_TITLE, None)
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
stage = new_state.get(STATE_STAGE, STAGE_START)
|
159 |
+
history: List[Dict[str, Any]] = new_state.get(STATE_HISTORY, []) # History from view already includes latest user msg
|
160 |
+
current_title = new_state.get(STATE_CURRENT_TITLE, DEFAULT_CHAT_TITLE)
|
161 |
+
|
162 |
+
ai_reply_for_user = ""
|
163 |
+
|
164 |
+
logger.debug(f"Orchestrator (DSPy) received: Stage='{stage}', Title='{current_title}', History len={len(history)}")
|
165 |
+
if uploaded_resource_data:
|
166 |
+
logger.info(f"Processing {len(uploaded_resource_data)} uploaded resources.")
|
167 |
+
|
168 |
+
try:
|
169 |
+
# --- Initial Resource Processing (only if resources are provided AND it's the start of negotiation) ---
|
170 |
+
#Resources can Be only Uploaded at the start.
|
171 |
+
if stage == STAGE_START and uploaded_resource_data:
|
172 |
+
logger.info("First turn with resources. Processing them now...")
|
173 |
+
|
174 |
+
total_chars = sum(len(text) for text in uploaded_resource_data.values())
|
175 |
+
|
176 |
+
resource_summary_for_manager = "Resources were provided by the user." # Default
|
177 |
+
resource_type_for_syllabus = "NONE"
|
178 |
+
resource_content_json = "{}"
|
179 |
+
#Syllabus Segregation
|
180 |
+
|
181 |
+
if not uploaded_resource_data:
|
182 |
+
resource_summary_for_manager = "No resources were processed or user did not provide any."
|
183 |
+
resource_type_for_syllabus = "NONE"
|
184 |
+
elif total_chars > 70000: # Heuristic from your notebook for "heavy" resources
|
185 |
+
logger.info(f"Total resource chars ({total_chars}) > 70k. Using DYNAMIC SUMMARIES for syllabus gen.")
|
186 |
+
resource_type_for_syllabus = "SUMMARIES"
|
187 |
+
# For manager, provide an overview from InitialResourceSummarizer
|
188 |
+
# Truncate content for initial summary if very large before sending to InitialResourceSummarizer
|
189 |
+
initial_summary_input_dict = {
|
190 |
+
fname: content[:40000] for fname, content in uploaded_resource_data.items()
|
191 |
+
}
|
192 |
+
resource_summary_for_manager = INITIAL_RESOURCE_SUMMARIZER.forward(initial_summary_input_dict)
|
193 |
+
|
194 |
+
new_state['raw_resource_data_for_dynamic_summary'] = uploaded_resource_data # Store full data
|
195 |
+
else:
|
196 |
+
logger.info(f"Total resource chars ({total_chars}) <= 70k. Using RAW TEXT for syllabus gen.")
|
197 |
+
resource_type_for_syllabus = "RAW_TEXT"
|
198 |
+
initial_summary_input_dict = {
|
199 |
+
fname: content[:40000] for fname, content in uploaded_resource_data.items()
|
200 |
+
}
|
201 |
+
resource_summary_for_manager = INITIAL_RESOURCE_SUMMARIZER.forward(initial_summary_input_dict)
|
202 |
+
resource_content_json = json.dumps(uploaded_resource_data, indent=2)
|
203 |
+
new_state[STATE_RESOURCE_SUMMARY_OVERVIEW] = resource_summary_for_manager
|
204 |
+
new_state[STATE_RESOURCE_TYPE_FOR_SYLLABUS] = resource_type_for_syllabus
|
205 |
+
new_state[STATE_RESOURCE_CONTENT_JSON_FOR_SYLLABUS] = resource_content_json
|
206 |
+
new_state['raw_resource_data_for_dynamic_summary'] = uploaded_resource_data # Alreday done upside
|
207 |
+
|
208 |
+
|
209 |
+
# This should be done if Only History length is less than 2.
|
210 |
+
if resource_summary_for_manager and resource_summary_for_manager != "No resources were processed or user did not provide any." and len(history)<=2:
|
211 |
+
|
212 |
+
history.append({'role': 'model', 'parts': [{"text" : str(initial_summary_info) + str(resource_summary_for_manager)}],'message_type': 'internal_resource_summary'})
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
# --- Negotiation Phase (STAGE_START, STAGE_NEGOTIATING) ---
|
217 |
+
if stage in [STAGE_START, STAGE_NEGOTIATING]:
|
218 |
+
if stage == STAGE_START:
|
219 |
+
new_state[STATE_STAGE] = STAGE_NEGOTIATING
|
220 |
+
stage = STAGE_NEGOTIATING # Update local stage variable
|
221 |
+
|
222 |
+
logger.info(f"Orchestrator (DSPy): Stage={stage}. Calling ConversationManager.")
|
223 |
+
|
224 |
+
history_str = format_history_for_dspy(history)
|
225 |
+
current_syllabus_xml_str = new_state.get(STATE_FINAL_SYLLABUS) or \
|
226 |
+
get_last_syllabus_content_from_history(history) or \
|
227 |
+
"None" # Try to get latest syllabus for manager
|
228 |
+
|
229 |
+
# Get resource overview from state if set, otherwise "None"
|
230 |
+
resource_overview_for_manager = new_state.get(STATE_RESOURCE_SUMMARY_OVERVIEW, "No resources were processed or provided by the user for this session.")
|
231 |
+
|
232 |
+
action_code, display_text = CONVO_MANAGER.forward(
|
233 |
+
conversation_history_str=history_str,
|
234 |
+
current_syllabus_xml=current_syllabus_xml_str,
|
235 |
+
user_input=user_message_text, # Manager needs the latest user message explicitly
|
236 |
+
|
237 |
+
)
|
238 |
+
logger.info(f"ConversationManager action: '{action_code}', display_text: '{display_text[:100]}...'")
|
239 |
+
|
240 |
+
ai_reply_for_user = display_text # This will be empty if action is not CONVERSE
|
241 |
+
if display_text:
|
242 |
+
history.append({'role': 'model', 'parts': [{'text': display_text}]})
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
# --- Handle Actions from ConversationManager ---
|
247 |
+
if action_code in ["GENERATE", "MODIFY"]:
|
248 |
+
task_type_str = "generation" if action_code == "GENERATE" else "modification"
|
249 |
+
logger.info(f"Syllabus {task_type_str} requested. Resource type: {new_state.get(STATE_RESOURCE_TYPE_FOR_SYLLABUS)}")
|
250 |
+
retrieved_resource_type = new_state.get(STATE_RESOURCE_TYPE_FOR_SYLLABUS, "NONE")
|
251 |
+
retrieved_resource_content_json = new_state.get(STATE_RESOURCE_CONTENT_JSON_FOR_SYLLABUS, "{}")
|
252 |
+
_temp_resource_type = new_state.get(STATE_RESOURCE_TYPE_FOR_SYLLABUS) # Get value, could be Python None
|
253 |
+
if _temp_resource_type is None:
|
254 |
+
retrieved_resource_type = "NONE"
|
255 |
+
else:
|
256 |
+
retrieved_resource_type = _temp_resource_type
|
257 |
+
logger.info(f"Syllabus {task_type_str} requested. Resource type from state: {retrieved_resource_type}")
|
258 |
+
# If type is SUMMARIES, we need to generate them now using DynamicSummarizer
|
259 |
+
if retrieved_resource_type == "SUMMARIES":
|
260 |
+
raw_data_for_dynamic_summary = new_state.get('raw_resource_data_for_dynamic_summary')
|
261 |
+
if raw_data_for_dynamic_summary and isinstance(raw_data_for_dynamic_summary, dict):
|
262 |
+
logger.info("Generating dynamic summaries for syllabus router...")
|
263 |
+
summaries_for_syllabus = {}
|
264 |
+
history_str_for_summarizer = format_history_for_dspy(history) # Fresh history string
|
265 |
+
for res_id, res_content in raw_data_for_dynamic_summary.items():
|
266 |
+
summary_dict = DYNAMIC_SUMMARIZER_MODULE.forward(
|
267 |
+
resource_content=res_content,
|
268 |
+
resource_identifier=res_id,
|
269 |
+
conversation_history_str=history_str_for_summarizer
|
270 |
+
)
|
271 |
+
if summary_dict:
|
272 |
+
summaries_for_syllabus[res_id] = summary_dict
|
273 |
+
current_resource_content_json = json.dumps(summaries_for_syllabus, indent=2)
|
274 |
+
logger.info(f"Dynamic summaries generated. JSON length: {len(current_resource_content_json)}")
|
275 |
+
|
276 |
+
else:
|
277 |
+
logger.warning("SUMMARIES type selected but no 'raw_resource_data_for_dynamic_summary' found. Falling back to NONE.")
|
278 |
+
current_resource_type = "NONE"
|
279 |
+
current_resource_content_json = "{}"
|
280 |
+
if retrieved_resource_type == "RAW_TEXT":
|
281 |
+
current_resource_content_json = retrieved_resource_content_json
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
generated_xml = SYLLABUS_ROUTER.forward(
|
286 |
+
conversation_history_str=format_history_for_dspy(history),
|
287 |
+
resource_type=retrieved_resource_type,
|
288 |
+
resource_content=current_resource_content_json if retrieved_resource_type != "NONE" else None
|
289 |
+
)
|
290 |
+
print(retrieved_resource_type)
|
291 |
+
|
292 |
+
final_syllabus_content_for_frontend = generated_xml
|
293 |
+
message_content_type_for_syllabus_display = 'syllabus_markdown'
|
294 |
+
syllabus_generation_was_successful = False # Initialize flag
|
295 |
+
|
296 |
+
# --- BLOCK 1: XML to Markdown Formatting (and set success flag) ---
|
297 |
+
if generated_xml and not generated_xml.strip().upper().startswith(("<SYLLABUS>\n[ERROR", "<SYLLABUS>[ERROR")):
|
298 |
+
syllabus_generation_was_successful = True # Mark initial generation as successful
|
299 |
+
logger.info(f"Syllabus XML generated. Length: {len(generated_xml)}. Attempting Markdown formatting.")
|
300 |
+
|
301 |
+
if SYLLABUS_XML_TO_MARKDOWN_FORMATTER:
|
302 |
+
try:
|
303 |
+
format_prediction = SYLLABUS_XML_TO_MARKDOWN_FORMATTER(
|
304 |
+
syllabus_xml_input=generated_xml
|
305 |
+
)
|
306 |
+
formatted_markdown = format_prediction.cleaned_syllabus_markdown.strip()
|
307 |
+
|
308 |
+
if formatted_markdown and not formatted_markdown.lower().startswith(("[error", "[warn")):
|
309 |
+
final_syllabus_content_for_frontend = formatted_markdown
|
310 |
+
# message_content_type_for_syllabus_display = 'syllabus'
|
311 |
+
logger.info("Syllabus successfully formatted to Markdown.")
|
312 |
+
else:
|
313 |
+
logger.warning(f"Syllabus Markdown formatting returned empty/error: {formatted_markdown[:100]}. Using raw XML (from router).")
|
314 |
+
|
315 |
+
except Exception as fmt_e:
|
316 |
+
logger.error(f"Error during syllabus XML to Markdown formatting: {fmt_e}", exc_info=True)
|
317 |
+
else:
|
318 |
+
logger.warning("SYLLABUS_XML_TO_MARKDOWN_FORMATTER not available. Using raw XML (from router).")
|
319 |
+
|
320 |
+
else:
|
321 |
+
|
322 |
+
syllabus_generation_was_successful = False # Explicitly false
|
323 |
+
logger.error(f"Syllabus XML generation by SYLLABUS_ROUTER failed or returned error: {generated_xml[:200]}")
|
324 |
+
|
325 |
+
# --- BLOCK 2: Add syllabus to history and state ---
|
326 |
+
# This message is the syllabus display itself (or the error from the router if generation failed)
|
327 |
+
history.append({
|
328 |
+
'role': 'model',
|
329 |
+
'parts': [{'text': final_syllabus_content_for_frontend}],
|
330 |
+
'message_type': message_content_type_for_syllabus_display
|
331 |
+
})
|
332 |
+
print(history[-1])
|
333 |
+
new_state[STATE_DISPLAY_SYLLABUS_FLAG] = {
|
334 |
+
"content": final_syllabus_content_for_frontend,
|
335 |
+
"type": message_content_type_for_syllabus_display
|
336 |
+
}
|
337 |
+
|
338 |
+
# --- NEW BLOCK 3: Generate Conversational Reply (Feedback or Error) ---
|
339 |
+
if syllabus_generation_was_successful:
|
340 |
+
# The syllabus (Markdown or XML) is already in history. Now add the feedback prompt.
|
341 |
+
logger.info(f"Syllabus processed for display (type: {message_content_type_for_syllabus_display}). Requesting user feedback.")
|
342 |
+
if SYLLABUS_FEEDBACK_REQUESTER:
|
343 |
+
try:
|
344 |
+
|
345 |
+
history_for_feedback_str = format_history_for_dspy(history)
|
346 |
+
feedback_prediction = SYLLABUS_FEEDBACK_REQUESTER(
|
347 |
+
conversation_history_with_syllabus=history_for_feedback_str
|
348 |
+
)
|
349 |
+
ai_reply_for_user = feedback_prediction.feedback_query_to_user.strip()
|
350 |
+
if not ai_reply_for_user:
|
351 |
+
logger.warning("SYLLABUS_FEEDBACK_REQUESTER returned empty, using fallback.")
|
352 |
+
ai_reply_for_user = "I've drafted the syllabus. What are your thoughts?"
|
353 |
+
except Exception as fb_err:
|
354 |
+
logger.error(f"Error calling SYLLABUS_FEEDBACK_REQUESTER: {fb_err}", exc_info=True)
|
355 |
+
ai_reply_for_user = "Here is the syllabus draft. How does it look?"
|
356 |
+
else:
|
357 |
+
logger.error("SYLLABUS_FEEDBACK_REQUESTER not initialized. Using hardcoded feedback prompt.")
|
358 |
+
ai_reply_for_user = "I've prepared the syllabus. Please review it."
|
359 |
+
|
360 |
+
# Add the feedback prompt as the next message in history
|
361 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
362 |
+
|
363 |
+
else:
|
364 |
+
|
365 |
+
ai_reply_for_user = final_syllabus_content_for_frontend
|
366 |
+
logger.info(f"Syllabus generation failed. AI reply set to the error from router: {ai_reply_for_user[:100]}")
|
367 |
+
|
368 |
+
|
369 |
+
elif action_code == "FINALIZE":
|
370 |
+
logger.info("Finalization requested by manager.")
|
371 |
+
last_syllabus_in_history = get_last_syllabus_content_from_history(history)
|
372 |
+
if last_syllabus_in_history:
|
373 |
+
new_state[STATE_FINAL_SYLLABUS] = f"<syllabus>\n{last_syllabus_in_history}\n</syllabus>" # Store it
|
374 |
+
|
375 |
+
# Ask for learning style
|
376 |
+
style_question = LEARNING_STYLE_QUESTIONER.forward(
|
377 |
+
conversation_history_str=format_history_for_dspy(history)
|
378 |
+
)
|
379 |
+
ai_reply_for_user = style_question
|
380 |
+
history.append({'role': 'model', 'parts': [{'text': style_question}]})
|
381 |
+
else:
|
382 |
+
logger.warning("FINALIZE action but no syllabus found in history.")
|
383 |
+
ai_reply_for_user = "It seems we don't have a syllabus to finalize yet. Could we create one first?"
|
384 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
385 |
+
|
386 |
+
elif action_code == "PERSONA":
|
387 |
+
logger.info("Persona generation triggered by manager.")
|
388 |
+
final_syllabus_xml_str = new_state.get(STATE_FINAL_SYLLABUS)
|
389 |
+
if final_syllabus_xml_str:
|
390 |
+
logger.info("Generating explainer prompt body...")
|
391 |
+
explainer_prompt_body = PERSONA_PROMPT_GENERATOR.forward(
|
392 |
+
conversation_history_str=format_history_for_dspy(history)
|
393 |
+
)
|
394 |
+
if explainer_prompt_body:
|
395 |
+
full_explainer_prompt = f"{explainer_prompt_body}\n\nHere is the syllabus we will follow:\n{final_syllabus_xml_str}"
|
396 |
+
print(full_explainer_prompt)
|
397 |
+
new_state[STATE_EXPLAINER_PROMPT] = full_explainer_prompt
|
398 |
+
new_state[STATE_STAGE] = STAGE_EXPLAINING # << TRANSITION STAGE
|
399 |
+
new_state[STATE_TRANSITION_EXPLAINER_FLAG] = True
|
400 |
+
new_state[STATE_EXPLANATION_START_INDEX] = len(history) # Record index before explainer intro
|
401 |
+
|
402 |
+
logger.info("Explainer prompt generated. Moving to EXPLAINING stage.")
|
403 |
+
|
404 |
+
|
405 |
+
explainer_intro_query = "Based on your persona (defined in system_instructions) and the syllabus provided, please introduce yourself to the user. Briefly state what you'll be helping them with and adopt a welcoming tone consistent with your persona."
|
406 |
+
explainer_intro_response = EXPLAINER_MODULE.forward(
|
407 |
+
system_instructions_str=full_explainer_prompt,
|
408 |
+
history_str="None", # No prior *explainer* history for this first turn
|
409 |
+
user_query_str=explainer_intro_query
|
410 |
+
)
|
411 |
+
ai_reply_for_user = explainer_intro_response
|
412 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
413 |
+
else:
|
414 |
+
logger.error("Failed to generate explainer prompt body.")
|
415 |
+
ai_reply_for_user = "Sorry, I had trouble setting up the learning session. Please try again."
|
416 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
417 |
+
new_state[STATE_STAGE] = STAGE_ERROR
|
418 |
+
else:
|
419 |
+
logger.warning("PERSONA action but no finalized syllabus in state.")
|
420 |
+
ai_reply_for_user = "We need to finalize a syllabus before we can tailor the tutor. Shall we continue with that?"
|
421 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
422 |
+
|
423 |
+
elif action_code == "CONVERSE":
|
424 |
+
# ai_reply_for_user is already set from manager's display_text
|
425 |
+
if not ai_reply_for_user: # Should not happen if manager follows rules
|
426 |
+
logger.warning("CONVERSE action but manager provided no display_text. Using fallback.")
|
427 |
+
ai_reply_for_user = "Okay, how would you like to proceed?"
|
428 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
429 |
+
|
430 |
+
else:
|
431 |
+
logger.error(f"Unknown action_code '{action_code}' from ConversationManager.")
|
432 |
+
ai_reply_for_user = "I'm not sure how to proceed with that. Could you clarify?"
|
433 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
434 |
+
|
435 |
+
# --- Explanation Phase (STAGE_EXPLAINING) ---
|
436 |
+
elif stage == STAGE_EXPLAINING:
|
437 |
+
logger.info(f"Orchestrator (DSPy): Stage={stage}. Calling ExplainerModule.")
|
438 |
+
explainer_sys_prompt = modified_explainer_prompt or new_state.get(STATE_EXPLAINER_PROMPT)
|
439 |
+
expl_start_idx = new_state.get(STATE_EXPLANATION_START_INDEX, 0)
|
440 |
+
|
441 |
+
if not explainer_sys_prompt:
|
442 |
+
logger.error("Explainer stage but no explainer_system_prompt in state.")
|
443 |
+
ai_reply_for_user = "[SYSTEM ERROR: Explainer setup incomplete. Cannot proceed.]"
|
444 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
445 |
+
new_state[STATE_STAGE] = STAGE_ERROR
|
446 |
+
else:
|
447 |
+
# For explainer, only pass relevant part of history (after persona setup)
|
448 |
+
explainer_relevant_history_str = format_history_for_dspy(history[expl_start_idx:])
|
449 |
+
|
450 |
+
explainer_response = EXPLAINER_MODULE.forward(
|
451 |
+
system_instructions_str=explainer_sys_prompt,
|
452 |
+
history_str=explainer_relevant_history_str,
|
453 |
+
user_query_str=user_message_text
|
454 |
+
)
|
455 |
+
ai_reply_for_user = explainer_response
|
456 |
+
history.append({'role': 'model', 'parts': [{'text': explainer_response}]})
|
457 |
+
|
458 |
+
# --- Error Stage ---
|
459 |
+
elif stage == STAGE_ERROR:
|
460 |
+
logger.warning("Orchestrator is in ERROR stage.")
|
461 |
+
ai_reply_for_user = "I'm sorry, an internal error occurred. Please try starting a new conversation or contact support."
|
462 |
+
# To prevent loops, don't add this generic error to history if user just messaged. Let user try again.
|
463 |
+
|
464 |
+
# --- Unknown Stage ---
|
465 |
+
else:
|
466 |
+
logger.error(f"Orchestrator encountered an unknown stage: {stage}")
|
467 |
+
ai_reply_for_user = "[SYSTEM ERROR: Invalid application state. Please start over.]"
|
468 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
469 |
+
new_state[STATE_STAGE] = STAGE_ERROR
|
470 |
+
|
471 |
+
# --- Title Generation Logic (Simplified to use DSPy Predict) ---
|
472 |
+
final_message_count = len(history)
|
473 |
+
if current_title == DEFAULT_CHAT_TITLE and final_message_count >= TITLE_GENERATION_THRESHOLD:
|
474 |
+
logger.info("Conditions met for title generation.")
|
475 |
+
# Prepare a snippet of history for the title generator
|
476 |
+
history_for_title_str = format_history_for_dspy(history[:TITLE_MAX_HISTORY_SNIPPET_FOR_TITLE])
|
477 |
+
if TITLE_GENERATOR_PREDICTOR:
|
478 |
+
try:
|
479 |
+
title_prediction = TITLE_GENERATOR_PREDICTOR(chat_history_summary=history_for_title_str) # await predict
|
480 |
+
generated_title_text = title_prediction.chat_title.strip().strip('"\'')
|
481 |
+
if generated_title_text and not generated_title_text.lower().startswith(("[error", "[warn", "[empty")):
|
482 |
+
new_state[STATE_GENERATED_TITLE] = generated_title_text[:150] # Max length
|
483 |
+
logger.info(f"Generated title: '{new_state[STATE_GENERATED_TITLE]}'")
|
484 |
+
else:
|
485 |
+
logger.warning(f"Title generator returned empty or error-like: {generated_title_text}")
|
486 |
+
except Exception as title_e:
|
487 |
+
logger.error(f"Error during title generation predictor call: {title_e}", exc_info=True)
|
488 |
+
else:
|
489 |
+
logger.error("TITLE_GENERATOR_PREDICTOR not initialized.")
|
490 |
+
|
491 |
+
|
492 |
+
except Exception as e:
|
493 |
+
logger.error(f"Orchestrator (DSPy): Unhandled exception: {e}", exc_info=True)
|
494 |
+
ai_reply_for_user = "[SYSTEM ERROR: An unexpected issue occurred. Please try again.]"
|
495 |
+
new_state[STATE_STAGE] = STAGE_ERROR
|
496 |
+
# Ensure error is logged to history if not already the last message
|
497 |
+
if not history or not (history[-1]['role'] == 'model' and history[-1]['parts'][0]['text'] == ai_reply_for_user):
|
498 |
+
history.append({'role': 'model', 'parts': [{'text': ai_reply_for_user}]})
|
499 |
+
|
500 |
+
# --- Final State Update & Return ---
|
501 |
+
new_state[STATE_HISTORY] = history
|
502 |
+
logger.debug(f"Orchestrator (DSPy) returning: Stage='{new_state.get(STATE_STAGE)}', History Len={len(history)}, AI Reply starts: '{ai_reply_for_user[:50]}...'")
|
503 |
+
logger.debug(f"Flags: DisplaySyllabus='{new_state.get(STATE_DISPLAY_SYLLABUS_FLAG) is not None}', TransitionExplainer='{new_state.get(STATE_TRANSITION_EXPLAINER_FLAG)}'")
|
504 |
+
|
505 |
+
return ai_reply_for_user, new_state
|
506 |
+
|
507 |
+
|