|
|
|
|
|
|
|
import gradio as gr |
|
import os |
|
import logging |
|
from typing import Dict, Any, List, Optional |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
import dspy |
|
from config import ( |
|
initialize_dspy, RateLimiter, |
|
STATE_STAGE, STATE_HISTORY, STATE_CURRENT_TITLE, STATE_GENERATED_TITLE, |
|
STATE_EXPLAINER_PROMPT, STATE_TRANSITION_EXPLAINER_FLAG, STAGE_START, |
|
STATE_IS_FIRST_TURN, DEFAULT_CHAT_TITLE, |
|
) |
|
from orchestrator import process_chat_message, initialize_orchestrator_modules |
|
from resource_processor import process_uploaded_files |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='{levelname} {asctime} {name}: {message}', style='{') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
APP_MODE = os.getenv("APP_MODE", "visitor").lower() |
|
if APP_MODE not in ["admin", "visitor"]: |
|
raise ValueError("APP_MODE environment variable must be 'admin' or 'visitor'") |
|
|
|
UI_FEEDBACK_MAP = { |
|
"PROCESSING_INPUT": "🧠 Thinking...", |
|
"ANALYZING_RESOURCES_INITIAL": "📄 Analyzing your documents...", |
|
"GENERATING_SYLLABUS": "✍️ Crafting syllabus...", |
|
"EXPLAINER_RESPONSE": "💬 Tutor is responding...", |
|
|
|
|
|
} |
|
|
|
|
|
|
|
def initialize_session_state() -> Dict[str, Any]: |
|
"""Creates a fresh session state dictionary, including the initial greeting.""" |
|
initial_history = [{'role': 'model', 'parts': [{'text': "Hello! I'm ready to help build a personalized syllabus. What topic are you interested in learning about?"}]}] |
|
return { |
|
STATE_STAGE: STAGE_START, |
|
STATE_HISTORY: initial_history, |
|
STATE_CURRENT_TITLE: DEFAULT_CHAT_TITLE, |
|
STATE_IS_FIRST_TURN: True, |
|
} |
|
|
|
def start_session(api_key: str, api_tier: str): |
|
""" |
|
(Visitor Mode) Validates API, initializes backends, and transitions UI. |
|
ADDED: Debugging print statements to trace the authentication flow. |
|
""" |
|
|
|
print("\n--- [start_session] Function Entered ---") |
|
|
|
print(f"[start_session] Received API Key ending in: '...{api_key[-4:] if len(api_key) > 4 else api_key}'") |
|
print(f"[start_session] Received API Tier: {api_tier}") |
|
|
|
|
|
|
|
if not api_key.strip(): |
|
print("[start_session] DEBUG: Condition MET - API Key is empty or whitespace.") |
|
error_msg = "<p style='color:red;'>API Key cannot be empty. Please provide a valid key.</p>" |
|
yield (gr.update(visible=True), gr.update(visible=False), None, gr.update(value=error_msg, visible=True)) |
|
print("--- [start_session] END ---\n") |
|
return |
|
|
|
|
|
print("[start_session] DEBUG: Attempting to call initialize_dspy...") |
|
|
|
auth_result = initialize_dspy(api_key=api_key) |
|
print(f"[start_session] DEBUG: Result from initialize_dspy is: '{auth_result}' (Type: {type(auth_result)})") |
|
|
|
if not isinstance(auth_result, list) : |
|
|
|
print("[start_session] DEBUG: Condition MET - `if not auth_result` is TRUE. Authentication failed.") |
|
error_msg = "<p style='color:red;'>Authentication failed. The provided API key is invalid or has expired. Please check the key and try again.</p>" |
|
yield (gr.update(visible=True), gr.update(visible=False), None, gr.update(value=error_msg, visible=True)) |
|
print("--- [start_session] END ---\n") |
|
return |
|
|
|
print("[start_session] DEBUG: Condition SKIPPED - `if not auth_result` is FALSE. Assuming auth succeeded.") |
|
|
|
|
|
print("[start_session] DEBUG: Attempting to call initialize_orchestrator_modules...") |
|
modules_result = initialize_orchestrator_modules() |
|
print(f"[start_session] DEBUG: Result from initialize_orchestrator_modules is: {modules_result}") |
|
|
|
if not modules_result: |
|
print("[start_session] DEBUG: Condition MET - Backend module initialization failed.") |
|
error_msg = "<p style='color:red;'>Failed to initialize backend AI modules after authentication. Please contact support.</p>" |
|
yield (gr.update(visible=True), gr.update(visible=False), None, gr.update(value=error_msg, visible=True)) |
|
print("--- [start_session] END ---\n") |
|
return |
|
|
|
|
|
print("[start_session] DEBUG: All checks passed. Proceeding to success case.") |
|
max_calls = 7 if "Free" in api_tier else 1000 |
|
limiter = RateLimiter(max_calls=max_calls, time_period=60) |
|
|
|
yield ( |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
limiter, |
|
gr.update(visible=False), |
|
) |
|
print("--- [start_session] END: UI transitioned successfully. ---\n") |
|
|
|
|
|
|
|
def handle_user_interaction( |
|
user_message: str, |
|
uploaded_files: Optional[List[Any]], |
|
current_state: Dict[str, Any], |
|
file_names_state: List[str], |
|
limiter: Optional[RateLimiter], |
|
modified_explainer_prompt: str |
|
): |
|
""" |
|
Main generator function, refactored for cleaner history management and clarity |
|
while consuming the stream of updates from the orchestrator. |
|
""" |
|
|
|
|
|
|
|
|
|
ui_history = [] |
|
is_first_turn = current_state.get(STATE_IS_FIRST_TURN, False) |
|
|
|
for msg in current_state.get(STATE_HISTORY, []): |
|
if msg.get('message_type') != "internal_resource_summary": |
|
role = "assistant" if msg.get("role") == "model" else "user" |
|
content = msg.get("content", "") or (msg.get("parts")[0].get("text", "") if msg.get("parts") else "") |
|
ui_history.append({"role": role, "content": content}) |
|
|
|
|
|
ui_history.append({"role": "user", "content": user_message}) |
|
|
|
ui_history.append({"role": "assistant", "content": f"*{UI_FEEDBACK_MAP['PROCESSING_INPUT']}*"}) |
|
|
|
|
|
backend_history = current_state.get(STATE_HISTORY, []) |
|
backend_history.append({'role': 'user', 'parts': [{'text': user_message}]}) |
|
current_state[STATE_HISTORY] = backend_history |
|
|
|
|
|
all_file_names = sorted(list(set(file_names_state + [f.name for f in uploaded_files or []]))) |
|
file_display_md = "#### Uploaded Resources:\n" + "\n".join([f"- `{os.path.basename(name)}`" for name in all_file_names]) if all_file_names else "" |
|
file_uploader_visible = is_first_turn and not bool(uploaded_files) |
|
file_display_visible = bool(all_file_names) |
|
|
|
print("YIELD 1: Displaying user message and initial status.") |
|
yield ( |
|
gr.update(value=ui_history), |
|
gr.update(value=""), |
|
current_state, |
|
gr.update(visible=file_uploader_visible), |
|
gr.update(interactive=False), |
|
gr.update(), gr.update(), |
|
gr.update(value=file_display_md, visible=file_display_visible), |
|
all_file_names, |
|
gr.update(visible=False), |
|
gr.update(), gr.update() |
|
) |
|
|
|
|
|
orchestrator_kwargs = { |
|
"user_message_text": user_message, |
|
"current_session_state": current_state, |
|
"modified_explainer_prompt": modified_explainer_prompt or None, |
|
"uploaded_resource_data": process_uploaded_files(uploaded_files) if uploaded_files else None |
|
} |
|
current_state[STATE_IS_FIRST_TURN] = False |
|
if limiter: limiter.wait_if_needed() |
|
|
|
final_state = None |
|
try: |
|
|
|
for update_type, payload in process_chat_message(**orchestrator_kwargs): |
|
if update_type == "status": |
|
status_message = UI_FEEDBACK_MAP.get(payload, "Processing...") |
|
|
|
ui_history[-1]['content'] = f"*{status_message}*" |
|
print(f"YIELD (Status Update): {status_message}") |
|
|
|
yield ( |
|
gr.update(value=ui_history), |
|
gr.update(), gr.update(), gr.update(), gr.update(), |
|
gr.update(), gr.update(), gr.update(), gr.update(), |
|
gr.update(), gr.update(), gr.update() |
|
) |
|
elif update_type == "final_result": |
|
final_state = payload |
|
break |
|
|
|
except Exception as e: |
|
logger.error(f"Orchestrator stream error: {e}", exc_info=True) |
|
current_state[STATE_HISTORY].append({'role': 'model', 'parts': [{'text': "An error occurred during processing."}]}) |
|
final_state = current_state |
|
|
|
|
|
if not final_state: |
|
logger.error("Processing finished without a final state.") |
|
current_state[STATE_HISTORY].append({'role': 'model', 'parts': [{'text': "A critical error occurred."}]}) |
|
final_state = current_state |
|
|
|
|
|
final_ui_history = [] |
|
for message in final_state.get(STATE_HISTORY, []): |
|
if message.get('message_type') == "internal_resource_summary": continue |
|
role = "assistant" if message.get("role") == "model" else "user" |
|
content = message.get('content', '') or (message.get("parts")[0].get("text", "") if message.get("parts") else "") |
|
final_ui_history.append({"role": role, "content": content}) |
|
|
|
|
|
looks_good_btn_update = gr.update(visible=False) |
|
if final_ui_history and "what are your thoughts?" in final_ui_history[-1]['content'].lower(): |
|
looks_good_btn_update = gr.update(visible=True) |
|
|
|
explainer_accordion_update, explainer_box_update, app_tabs_update, documentation_update = (gr.update(),)*4 |
|
if final_state.get(STATE_TRANSITION_EXPLAINER_FLAG): |
|
explainer_accordion_update = gr.update(visible=True, open=True) |
|
explainer_prompt_value = final_state.get(STATE_EXPLAINER_PROMPT, "") |
|
explainer_box_update = gr.update(value=explainer_prompt_value) |
|
app_tabs_update = gr.update(selected="doc_tab") |
|
full_documentation_text = f""" |
|
# Generated Tutor Persona |
|
*This document contains the complete system prompt, including the finalized syllabus, that defines the AI tutor's behavior, personality, and knowledge base. You can copy this for reference or use in other applications.* |
|
*** |
|
{explainer_prompt_value} |
|
""" |
|
documentation_update = gr.update(value=full_documentation_text) |
|
|
|
print("YIELD 2: Displaying final AI response.") |
|
yield ( |
|
gr.update(value=final_ui_history), |
|
gr.update(value=""), |
|
final_state, |
|
gr.update(visible=False, interactive=False), |
|
gr.update(interactive=True), |
|
explainer_accordion_update, |
|
explainer_box_update, |
|
gr.update(value=file_display_md, visible=file_display_visible), |
|
all_file_names, |
|
looks_good_btn_update, |
|
app_tabs_update, |
|
documentation_update, |
|
) |
|
|
|
|
|
|
|
custom_css = """ |
|
/* --- Overall Page & Theme --- */ |
|
.gradio-container { background-color: #F9FAFB; } |
|
.dark .gradio-container { background-color: #111827; } |
|
|
|
/* --- THE KEY FIX: Make the chatbot tall and scrollable --- */ |
|
#chatbot { |
|
/* Use vh (viewport height) to make the chatbot take up most of the screen */ |
|
min-height: 60vh !important; |
|
background-color: white !important; /* Distinct white background */ |
|
border: 1px solid #E5E7EB !important; |
|
border-radius: 12px !important; |
|
} |
|
.dark #chatbot { |
|
background-color: #1F2937 !important; /* Distinct dark background for chatbot */ |
|
border-color: #374151 !important; |
|
} |
|
|
|
/* --- Input Bar Styling --- */ |
|
/* Add a top margin to the input row to create visual space from the chatbot */ |
|
.chat-input-row { margin-top: 1rem !important; } |
|
|
|
/* Style the textbox itself for a clean look */ |
|
#user_input_textbox textarea { |
|
background-color: #FFFFFF !important; |
|
border: 1px solid #D1D5DB !important; |
|
border-radius: 8px !important; |
|
} |
|
.dark #user_input_textbox textarea { |
|
background-color: #374151 !important; |
|
color: #F3F4F6 !important; |
|
border-color: #4B5563 !important; |
|
} |
|
|
|
/* --- General styling from before (tabs, small buttons) --- */ |
|
/* (This part remains the same as the version you liked) */ |
|
#app-header { text-align: center; color: #4A5568; margin-bottom: 0.5rem !important; } |
|
.dark #app-header { color: #D1D5DB; } |
|
.sm-button { min-width: 0 !important; padding: 0.2rem 0.6rem !important; /* ...etc... */ } |
|
#app-tabs .tab-nav button.selected { border-bottom-color: #4F46E5 !important; color: #4F46E5 !important; } |
|
.dark #app-tabs .tab-nav button.selected { border-bottom-color: #A5B4FC !important; color: #A5B4FC !important; } |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="AI Syllabus Architect") as demo: |
|
|
|
|
|
session_state = gr.State(value=initialize_session_state) |
|
rate_limiter_state = gr.State(value=None) |
|
uploaded_file_names_state = gr.State([]) |
|
header_visibility_state = gr.State(value=True) |
|
|
|
|
|
with gr.Column(visible=True) as header_view: |
|
gr.Markdown( |
|
""" |
|
# AI Tutor & Syllabus Planner |
|
* Upload a resource or ask what you want to learn to generate a syllabus. Finalize the plan,<br>then tell the AI how you want to be taught. The tutor will then explain the topics based on your persona. |
|
""", |
|
elem_id="app-header" |
|
) |
|
toggle_header_btn = gr.Button("⬆️", elem_classes="sm-button") |
|
|
|
|
|
with gr.Column(visible=(APP_MODE == 'visitor'), elem_id="api_setup_view") as api_setup_view: |
|
gr.Markdown("### 🔑 Please enter your Google AI API Key below to begin. You can get your free key from [Google AI Studio](https://aistudio.google.com/app/apikey).") |
|
|
|
api_key_input = gr.Textbox(label="Google API Key", placeholder="Enter your API key here...", type="password") |
|
api_tier_radio = gr.Radio(["Free Tier (7 calls/min)", "Paid Tier (1000 calls/min)"], label="Select API Tier", value="Free Tier (7 calls/min)") |
|
api_key_submit_button = gr.Button("Start Session", variant="primary") |
|
api_error_output = gr.Markdown(visible=False) |
|
|
|
|
|
|
|
|
|
with gr.Tabs(elem_id="app-tabs", visible=(APP_MODE == 'admin')) as app_tabs: |
|
|
|
with gr.Tab("Chat Interface", id="chat_tab"): |
|
with gr.Row(equal_height=False): |
|
|
|
|
|
with gr.Column(scale=7) as chat_column: |
|
open_sidebar_btn = gr.Button("Show Resources & Persona ➡️", elem_classes="sm-button", visible=False) |
|
|
|
initial_chat_ui = [{"role": "assistant", "content": "Hello! I'm ready to help build a personalized syllabus. What topic are you interested in learning about?"}] |
|
chatbot = gr.Chatbot( |
|
initial_chat_ui, elem_id="chatbot", type="messages", |
|
show_label=False, render_markdown=True, |
|
avatar_images=(None, "https://i.imgur.com/3pyR0Vf.png") |
|
) |
|
|
|
|
|
with gr.Row(): |
|
looks_good_btn = gr.Button("looks good", size="sm", visible=False) |
|
|
|
|
|
with gr.Row(elem_classes="chat-input-row"): |
|
user_input_textbox = gr.Textbox( |
|
elem_id="user_input_textbox", |
|
scale=4, show_label=False, |
|
placeholder="Type your message here...", container=False |
|
) |
|
send_button = gr.Button("Send", variant="primary", scale=1, min_width=120) |
|
|
|
|
|
with gr.Column(scale=3, visible=True) as tools_sidebar: |
|
close_sidebar_btn = gr.Button("Close Sidebar ➡️", elem_classes="sm-button") |
|
with gr.Accordion("🛠️ Session Content", open=True): |
|
gr.Markdown("### 📄 Resources") |
|
file_uploader = gr.File(label="Upload Learning Materials (First Turn Only)", file_count="multiple", file_types=[".pdf", ".docx", ".txt"], interactive=True) |
|
file_display = gr.Markdown(visible=False) |
|
with gr.Accordion("View/Edit AI Tutor Persona", open=False, visible=False) as explainer_prompt_accordion: |
|
explainer_prompt_box = gr.Textbox(label="Tutor Persona System Prompt", lines=15, interactive=True, show_copy_button=True, info="You can view and modify the AI Tutor's persona here.") |
|
|
|
|
|
with gr.Tab("How to Use"): |
|
gr.Markdown( |
|
""" |
|
### Video |
|
How to Use AI Tutor - https://www.youtube.com/embed/p8uxJPLlQg4 |
|
Inspiration & Limitations- https://www.youtube.com/embed/gBsjCHJn1BA |
|
--- |
|
|
|
**1. Start a Conversation:** |
|
Begin by telling the AI what you want to learn. Be specific! |
|
*Example: "I want to learn about building a RAG pipeline from scratch using Python."* |
|
|
|
**2. Upload Resources (Optional):** |
|
For a more tailored syllabus, upload relevant documents (`.pdf`, `.txt`, `.docx`) in your first message. The AI will use these as context. |
|
|
|
**3. Negotiate the Syllabus:** |
|
The AI will propose a syllabus. You can ask for changes, additions, or removals. |
|
*Example: "Can you add a section on vector databases?"* |
|
|
|
**4. Finalize and Learn:** |
|
Once you're happy with the syllabus, tell the AI to finalize it (e.g., "This looks good, let's finalize it."). This will generate the tutor's persona and move to the learning phase. |
|
|
|
**5. Interact with the Tutor:** |
|
You can edit the tutor's persona at any time in the "Session Content" section to change its teaching style. |
|
|
|
--- |
|
|
|
### Pro-User Guide: For a More Advanced Session |
|
|
|
This is for users who want to architect a superior learning experience. Your prompts are the blueprints. |
|
|
|
**1. On Architecting the Syllabus** |
|
|
|
To get a truly calibrated result, you need to be precise. |
|
|
|
* **Pinpoint Everything:** The key is to **pinpoint to every thing**. The more extra information you give, the better the AI can calibrate the syllabus to your exact needs. |
|
* **Request Specific comparison :** Don't be afraid to demand more. For instance, you can **ask it for "the advanced version that contrasts one concept with another."** |
|
* *Example:* `"For the data analysis module, I want the advanced version that contrasts the performance of Pandas with Polars for datasets over 10GB."* |
|
|
|
**2. On Commanding the Tutor Persona** |
|
|
|
This is the most important part. A well-defined persona yields a far more convincing and effective tutor. |
|
|
|
* **The Core Principle:** When handling the Persona, **just don't ask the AI what persona you need.** A power user doesn't ask for a persona, they command one. You must *instruct* the AI on who it needs to be. |
|
|
|
* **Advanced Techniques for Persona Prompts:** |
|
* **First-Principles Thinking:** To force deep, foundational understanding. |
|
* *Prompt Example:* `"Adopt the persona of a modern-day Feynman who thinks from first principles. When I ask about 'RAG pipelines,' start from the fundamental problem: 'How does a machine retrieve relevant information from a vast text library?' and build up from there."` |
|
* **The Socratic Method:** To challenge your own thinking. |
|
* *Prompt Example:* `"Become a Socratic tutor. Never give me a direct answer. Instead, relentlessly question my assumptions to lead me to the answer myself. If I say 'A vector database is faster,' your first response should be 'What do you mean by 'faster,' and compared to what?'"` |
|
* **Key Figures from History:** To get a unique and powerful perspective. |
|
* *Prompt Example:* `"Teach me chess as if you are Bobby Fischer preparing me for a world championship. Your tone should be intense, obsessive, and focused on total dominance. We will analyze unorthodox openings, drill methods to exploit opponent weaknesses, and master endgame precision. Every lesson is a step toward crushing the competition."` |
|
|
|
**"After finalizing your perfected syllabus, you will be asked a persona question by the AI. Answer it based on that persona to begin your advanced learning session."**. |
|
""" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Tab("Explainer Persona Prompt", id="doc_tab"): |
|
|
|
brief_documentation_display = gr.Markdown( |
|
""" |
|
## Tutor Persona Prompt |
|
|
|
This Prompt will be generated after you finalize the syllabus in the chat. |
|
|
|
It will contain the complete persona and system prompt that guides the AI tutor's teaching style, personality, and knowledge base. |
|
|
|
--- |
|
*Waiting for syllabus to be finalized...* |
|
""" |
|
) |
|
|
|
api_key_submit_button.click(fn=start_session, inputs=[api_key_input, api_tier_radio], outputs=[api_setup_view, app_tabs, rate_limiter_state, api_error_output]) |
|
|
|
def toggle_header(current_visibility_state): |
|
new_visibility = not current_visibility_state |
|
new_button_icon = "⬇️ Show Header" if not new_visibility else "⬆️ Hide Header" |
|
return new_visibility, gr.update(visible=new_visibility), gr.update(value=new_button_icon) |
|
toggle_header_btn.click(toggle_header, inputs=[header_visibility_state], outputs=[header_visibility_state, header_view, toggle_header_btn]) |
|
|
|
def close_sidebar(): |
|
return {tools_sidebar: gr.update(visible=False), open_sidebar_btn: gr.update(visible=True), chat_column: gr.update(scale=10)} |
|
def open_sidebar(): |
|
return {tools_sidebar: gr.update(visible=True), open_sidebar_btn: gr.update(visible=False), chat_column: gr.update(scale=7)} |
|
close_sidebar_btn.click(close_sidebar, outputs=[tools_sidebar, open_sidebar_btn, chat_column]) |
|
open_sidebar_btn.click(open_sidebar, outputs=[tools_sidebar, open_sidebar_btn, chat_column]) |
|
|
|
chat_inputs = [user_input_textbox, file_uploader, session_state, uploaded_file_names_state, rate_limiter_state, explainer_prompt_box] |
|
chat_outputs = [chatbot, user_input_textbox, session_state, file_uploader, send_button, explainer_prompt_accordion, explainer_prompt_box, file_display, uploaded_file_names_state, looks_good_btn, app_tabs, brief_documentation_display] |
|
|
|
user_input_textbox.submit(fn=handle_user_interaction, inputs=chat_inputs, outputs=chat_outputs) |
|
send_button.click(fn=handle_user_interaction, inputs=chat_inputs, outputs=chat_outputs) |
|
|
|
looks_good_btn.click(lambda: "looks good", inputs=[], outputs=[user_input_textbox]).then( |
|
fn=handle_user_interaction, |
|
inputs=chat_inputs, |
|
outputs=chat_outputs |
|
) |
|
if __name__ == "__main__": |
|
|
|
if APP_MODE == 'admin': |
|
logger.info("Starting in ADMIN mode.") |
|
if initialize_dspy() and initialize_orchestrator_modules(): |
|
logger.info("Admin mode ready.") |
|
else: |
|
logger.critical("FATAL: Could not initialize DSPy or orchestrator modules in Admin mode.") |
|
else: |
|
logger.info("Starting in VISITOR mode. Waiting for user to provide API key.") |
|
demo.queue().launch(debug=True) |
|
|