Yaswanth123's picture
create app.py
3a7aabb verified
raw
history blame
8.43 kB
import gradio as gr
import logging
import os
from typing import List, Dict, Any, Optional
# --- 1. CONFIGURATION FIRST ---
from config import initialize_dspy
custom_lm = initialize_dspy()
# --- 2. Now Import Other Modules ---
from config import (
API_KEY, STATE_STAGE, STATE_HISTORY, STAGE_START, STAGE_EXPLAINING,
STATE_EXPLAINER_PROMPT
)
from resource_processor import process_uploaded_files
from orchestrator import process_chat_message
# Setup basic logging
logging.basicConfig(level=logging.INFO, format='{levelname} {asctime} [%(name)s]: {message}', style='{')
logger = logging.getLogger(__name__)
def respond(
user_message: str, # The content from the textbox
chat_history_ui: List[Dict[str, str]],
app_state: Dict[str, Any],
uploaded_files: Optional[List[Any]],
explainer_prompt_display: str
):
"""
Core backend function. Receives UI state, calls orchestrator, and returns updated UI state.
This version also handles clearing the input textbox directly.
"""
# Guard clause: If user sends an empty message, do nothing.
if not user_message.strip():
# Return all components unchanged, including the uncleared textbox
return chat_history_ui, app_state, gr.update(), gr.update(), gr.update(), user_message
# Guard clause: If the API key is missing, the app won't work.
if not custom_lm:
error_msg = "FATAL ERROR: AI Backend is not configured. Please check your .env file for a valid GOOGLE_API_KEY."
chat_history_ui.append({"role": "user", "content": user_message})
chat_history_ui.append({"role": "assistant", "content": error_msg})
# Keep file uploader visible on error, but clear the textbox.
yield chat_history_ui, app_state, gr.update(visible=True), gr.update(), gr.update(), ""
return
# --- Step 1: Update UI and State with User's Message ---
chat_history_ui.append({"role": "user", "content": user_message})
app_state[STATE_HISTORY].append({'role': 'user', 'parts': [{'text': user_message}]})
chat_history_ui.append({"role": "assistant", "content": ""}) # Placeholder for bot response
# First yield for immediate UI update. Hide file uploader, but don't clear textbox yet.
yield chat_history_ui, app_state, gr.update(visible=False), gr.update(), gr.update(), user_message
# --- Step 2: Handle File Uploads ---
processed_file_data = None
if app_state.get(STATE_STAGE) == STAGE_START and uploaded_files:
logger.info(f"Processing {len(uploaded_files)} files for new chat session.")
processed_file_data = process_uploaded_files(uploaded_files)
# --- Step 3: Call the Main Agent Logic (The Orchestrator) ---
try:
final_user_facing_reply, new_state = process_chat_message(
user_message_text=user_message,
current_session_state=app_state,
uploaded_resource_data=processed_file_data,
modified_explainer_prompt=explainer_prompt_display
)
app_state = new_state
except Exception as e:
logger.error(f"Critical error in orchestrator call: {e}", exc_info=True)
final_user_facing_reply = f"[SYSTEM ERROR: An exception occurred in the agent's logic. Please check the logs. Details: {e}]"
# --- Step 4: Update the UI with the AI's Final Response ---
syllabus_flag_data = app_state.get("display_syllabus_flag")
if syllabus_flag_data:
syllabus_content = syllabus_flag_data.get("content", "Error displaying syllabus.")
chat_history_ui[-1] = {"role": "assistant", "content": syllabus_content}
chat_history_ui.append({"role": "assistant", "content": final_user_facing_reply})
app_state.pop("display_syllabus_flag", None)
else:
chat_history_ui[-1]['content'] = final_user_facing_reply
# --- Step 5: Determine visibility of explainer prompt box for the final return ---
prompt_update = gr.update(visible=False)
header_update = gr.update(visible=False)
if new_state.get(STATE_STAGE) == STAGE_EXPLAINING:
prompt_value = explainer_prompt_display if explainer_prompt_display else new_state.get(STATE_EXPLAINER_PROMPT)
prompt_update = gr.update(value=prompt_value, visible=True)
header_update = gr.update(visible=True)
# Final yield: return all component states AND an empty string to clear the textbox.
yield chat_history_ui, app_state, gr.update(visible=False), header_update, prompt_update, ""
def start_new_session():
""" Resets the chat history, internal state, and all UI components for a new conversation. """
logger.info("UI action: Starting new session.")
initial_state = {
STATE_STAGE: STAGE_START,
STATE_HISTORY: [{'role': 'model', 'parts': [{'text': 'Hello! What would you like to learn about today?'}]}]
}
initial_chat_history_ui = [{"role": "assistant", "content": "Hello! What would you like to learn about today?"}]
return (
initial_chat_history_ui,
initial_state,
gr.update(value=[], visible=True), # File uploader
gr.update(visible=False), # Prompt header
gr.update(value="", visible=False), # Prompt textbox
"" # Clear the main textbox
)
# --- 3. Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Forge Guide AI Tutor") as demo:
gr.Markdown("# Forge Guide: AI Syllabus Architect")
gr.Markdown("Start a new conversation by describing what you want to learn. For new chats, you can also upload resources like PDFs or text files.")
app_state = gr.State({
STATE_STAGE: STAGE_START,
STATE_HISTORY: [{'role': 'model', 'parts': [{'text': 'Hello! What would you like to learn about today?'}]}]
})
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
[{"role": "assistant", "content": "Hello! What would you like to learn about today?"}],
elem_id="chatbot",
height=650,
render_markdown=True,
avatar_images=(None, "https://i.imgur.com/3pyR0Vf.png"),
type='messages',
latex_delimiters=[{"left": "$$", "right": "$$", "display": True}, {"left": "$", "right": "$", "display": False}]
)
with gr.Row():
txt_input = gr.Textbox(
scale=4,
show_label=False,
placeholder="e.g., 'I want to build a RAG pipeline from scratch'",
container=False,
)
submit_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
with gr.Column(scale=1):
gr.Markdown("### Resources")
file_uploader = gr.File(
file_count="multiple",
label="Upload for New Chat (Optional)",
file_types=[".pdf", ".txt", ".docx"],
visible=True,
interactive=True,
)
new_session_btn = gr.Button("Start New Session", variant="secondary")
tutor_prompt_header = gr.Markdown("### Tutor Persona Prompt", visible=False)
explainer_prompt_display = gr.Textbox(
label="You can modify the tutor's persona and instructions here:",
lines=15,
interactive=True,
visible=False,
)
# --- 4. Event Listeners: Wiring the UI to the Backend ---
submit_actions = [txt_input, chatbot, app_state, file_uploader, explainer_prompt_display]
output_components = [chatbot, app_state, file_uploader, tutor_prompt_header, explainer_prompt_display, txt_input]
submit_btn.click(
fn=respond,
inputs=submit_actions,
outputs=output_components,
)
txt_input.submit(
fn=respond,
inputs=submit_actions,
outputs=output_components,
)
new_session_btn.click(
fn=start_new_session,
inputs=[],
outputs=output_components
)
# --- 5. Launch the App ---
if __name__ == "__main__":
if not API_KEY:
print("\n" + "="*60)
print("CRITICAL ERROR: Cannot launch Gradio app.")
print("Your GOOGLE_API_KEY is not set in the .env file.")
print("="*60 + "\n")
else:
print("Launching Gradio app...")
demo.queue().launch(debug=True)