asammoud
Re-add large CSVs using Git LFS
b265364
raw
history blame
4.27 kB
import torch
from torch.nn import Parameter, Linear, Sequential, BatchNorm1d, ReLU
import torch.nn.functional as F
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import remove_self_loops, add_self_loops, softmax
from torch_geometric.nn.inits import glorot, zeros
import time
import math
class GraphLayer(MessagePassing):
def __init__(self, in_channels, out_channels, heads=1, concat=True,
negative_slope=0.2, dropout=0, bias=True, inter_dim=-1,**kwargs):
super(GraphLayer, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.heads = heads
self.concat = concat
self.negative_slope = negative_slope
self.dropout = dropout
self.__alpha__ = None
self.lin = Linear(in_channels, heads * out_channels, bias=False)
self.att_i = Parameter(torch.Tensor(1, heads, out_channels))
self.att_j = Parameter(torch.Tensor(1, heads, out_channels))
self.att_em_i = Parameter(torch.Tensor(1, heads, out_channels))
self.att_em_j = Parameter(torch.Tensor(1, heads, out_channels))
if bias and concat:
self.bias = Parameter(torch.Tensor(heads * out_channels))
elif bias and not concat:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.lin.weight)
glorot(self.att_i)
glorot(self.att_j)
zeros(self.att_em_i)
zeros(self.att_em_j)
zeros(self.bias)
def forward(self, x, edge_index, embedding, return_attention_weights=False):
""""""
if torch.is_tensor(x):
x = self.lin(x)
x = (x, x)
else:
x = (self.lin(x[0]), self.lin(x[1]))
self.node_dim=0
edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index,
num_nodes=x[1].size(self.node_dim))
out = self.propagate(edge_index, x=x, embedding=embedding, edges=edge_index,
return_attention_weights=return_attention_weights)
if self.concat:
out = out.view(-1, self.heads * self.out_channels)
else:
out = out.mean(dim=1)
if self.bias is not None:
out = out + self.bias
if return_attention_weights:
alpha, self.__alpha__ = self.__alpha__, None
return out, (edge_index, alpha)
else:
return out
def message(self, x_i, x_j, edge_index_i, size_i,
embedding,
edges,
return_attention_weights):
x_i = x_i.view(-1, self.heads, self.out_channels)
x_j = x_j.view(-1, self.heads, self.out_channels)
if embedding is not None:
embedding_i, embedding_j = embedding[edge_index_i], embedding[edges[0]]
embedding_i = embedding_i.unsqueeze(1).repeat(1,self.heads,1)
embedding_j = embedding_j.unsqueeze(1).repeat(1,self.heads,1)
key_i = torch.cat((x_i, embedding_i), dim=-1)
key_j = torch.cat((x_j, embedding_j), dim=-1)
cat_att_i = torch.cat((self.att_i, self.att_em_i), dim=-1)
cat_att_j = torch.cat((self.att_j, self.att_em_j), dim=-1)
alpha = (key_i * cat_att_i).sum(-1) + (key_j * cat_att_j).sum(-1)
alpha = alpha.view(-1, self.heads, 1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i)
if return_attention_weights:
self.__alpha__ = alpha
alpha = F.dropout(alpha, p=self.dropout, training=self.training)
return x_j * alpha.view(-1, self.heads, 1)
def __repr__(self):
return '{}({}, {}, heads={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels, self.heads)