Spaces:
Runtime error
Runtime error
Upload CaffeLoader.py
Browse files- CaffeLoader.py +254 -0
CaffeLoader.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class VGG(nn.Module):
|
| 6 |
+
def __init__(self, features, num_classes=1000):
|
| 7 |
+
super(VGG, self).__init__()
|
| 8 |
+
self.features = features
|
| 9 |
+
self.classifier = nn.Sequential(
|
| 10 |
+
nn.Linear(512 * 7 * 7, 4096),
|
| 11 |
+
nn.ReLU(True),
|
| 12 |
+
nn.Dropout(),
|
| 13 |
+
nn.Linear(4096, 4096),
|
| 14 |
+
nn.ReLU(True),
|
| 15 |
+
nn.Dropout(),
|
| 16 |
+
nn.Linear(4096, num_classes),
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class VGG_SOD(nn.Module):
|
| 21 |
+
def __init__(self, features, num_classes=100):
|
| 22 |
+
super(VGG_SOD, self).__init__()
|
| 23 |
+
self.features = features
|
| 24 |
+
self.classifier = nn.Sequential(
|
| 25 |
+
nn.Linear(512 * 7 * 7, 4096),
|
| 26 |
+
nn.ReLU(True),
|
| 27 |
+
nn.Dropout(),
|
| 28 |
+
nn.Linear(4096, 4096),
|
| 29 |
+
nn.ReLU(True),
|
| 30 |
+
nn.Dropout(),
|
| 31 |
+
nn.Linear(4096, 100),
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class VGG_FCN32S(nn.Module):
|
| 36 |
+
def __init__(self, features, num_classes=1000):
|
| 37 |
+
super(VGG_FCN32S, self).__init__()
|
| 38 |
+
self.features = features
|
| 39 |
+
self.classifier = nn.Sequential(
|
| 40 |
+
nn.Conv2d(512,4096,(7, 7)),
|
| 41 |
+
nn.ReLU(True),
|
| 42 |
+
nn.Dropout(0.5),
|
| 43 |
+
nn.Conv2d(4096,4096,(1, 1)),
|
| 44 |
+
nn.ReLU(True),
|
| 45 |
+
nn.Dropout(0.5),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class VGG_PRUNED(nn.Module):
|
| 50 |
+
def __init__(self, features, num_classes=1000):
|
| 51 |
+
super(VGG_PRUNED, self).__init__()
|
| 52 |
+
self.features = features
|
| 53 |
+
self.classifier = nn.Sequential(
|
| 54 |
+
nn.Linear(512 * 7 * 7, 4096),
|
| 55 |
+
nn.ReLU(True),
|
| 56 |
+
nn.Dropout(0.5),
|
| 57 |
+
nn.Linear(4096, 4096),
|
| 58 |
+
nn.ReLU(True),
|
| 59 |
+
nn.Dropout(0.5),
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class NIN(nn.Module):
|
| 64 |
+
def __init__(self, pooling):
|
| 65 |
+
super(NIN, self).__init__()
|
| 66 |
+
if pooling == 'max':
|
| 67 |
+
pool2d = nn.MaxPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
|
| 68 |
+
elif pooling == 'avg':
|
| 69 |
+
pool2d = nn.AvgPool2d((3, 3),(2, 2),(0, 0),ceil_mode=True)
|
| 70 |
+
|
| 71 |
+
self.features = nn.Sequential(
|
| 72 |
+
nn.Conv2d(3,96,(11, 11),(4, 4)),
|
| 73 |
+
nn.ReLU(inplace=True),
|
| 74 |
+
nn.Conv2d(96,96,(1, 1)),
|
| 75 |
+
nn.ReLU(inplace=True),
|
| 76 |
+
nn.Conv2d(96,96,(1, 1)),
|
| 77 |
+
nn.ReLU(inplace=True),
|
| 78 |
+
pool2d,
|
| 79 |
+
nn.Conv2d(96,256,(5, 5),(1, 1),(2, 2)),
|
| 80 |
+
nn.ReLU(inplace=True),
|
| 81 |
+
nn.Conv2d(256,256,(1, 1)),
|
| 82 |
+
nn.ReLU(inplace=True),
|
| 83 |
+
nn.Conv2d(256,256,(1, 1)),
|
| 84 |
+
nn.ReLU(inplace=True),
|
| 85 |
+
pool2d,
|
| 86 |
+
nn.Conv2d(256,384,(3, 3),(1, 1),(1, 1)),
|
| 87 |
+
nn.ReLU(inplace=True),
|
| 88 |
+
nn.Conv2d(384,384,(1, 1)),
|
| 89 |
+
nn.ReLU(inplace=True),
|
| 90 |
+
nn.Conv2d(384,384,(1, 1)),
|
| 91 |
+
nn.ReLU(inplace=True),
|
| 92 |
+
pool2d,
|
| 93 |
+
nn.Dropout(0.5),
|
| 94 |
+
nn.Conv2d(384,1024,(3, 3),(1, 1),(1, 1)),
|
| 95 |
+
nn.ReLU(inplace=True),
|
| 96 |
+
nn.Conv2d(1024,1024,(1, 1)),
|
| 97 |
+
nn.ReLU(inplace=True),
|
| 98 |
+
nn.Conv2d(1024,1000,(1, 1)),
|
| 99 |
+
nn.ReLU(inplace=True),
|
| 100 |
+
nn.AvgPool2d((6, 6),(1, 1),(0, 0),ceil_mode=True),
|
| 101 |
+
nn.Softmax(),
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class ModelParallel(nn.Module):
|
| 107 |
+
def __init__(self, net, device_ids, device_splits):
|
| 108 |
+
super(ModelParallel, self).__init__()
|
| 109 |
+
self.device_list = self.name_devices(device_ids.split(','))
|
| 110 |
+
self.chunks = self.chunks_to_devices(self.split_net(net, device_splits.split(',')))
|
| 111 |
+
|
| 112 |
+
def name_devices(self, input_list):
|
| 113 |
+
device_list = []
|
| 114 |
+
for i, device in enumerate(input_list):
|
| 115 |
+
if str(device).lower() != 'c':
|
| 116 |
+
device_list.append("cuda:" + str(device))
|
| 117 |
+
else:
|
| 118 |
+
device_list.append("cpu")
|
| 119 |
+
return device_list
|
| 120 |
+
|
| 121 |
+
def split_net(self, net, device_splits):
|
| 122 |
+
chunks, cur_chunk = [], nn.Sequential()
|
| 123 |
+
for i, l in enumerate(net):
|
| 124 |
+
cur_chunk.add_module(str(i), net[i])
|
| 125 |
+
if str(i) in device_splits and device_splits != '':
|
| 126 |
+
del device_splits[0]
|
| 127 |
+
chunks.append(cur_chunk)
|
| 128 |
+
cur_chunk = nn.Sequential()
|
| 129 |
+
chunks.append(cur_chunk)
|
| 130 |
+
return chunks
|
| 131 |
+
|
| 132 |
+
def chunks_to_devices(self, chunks):
|
| 133 |
+
for i, chunk in enumerate(chunks):
|
| 134 |
+
chunk.to(self.device_list[i])
|
| 135 |
+
return chunks
|
| 136 |
+
|
| 137 |
+
def c(self, input, i):
|
| 138 |
+
if input.type() == 'torch.FloatTensor' and 'cuda' in self.device_list[i]:
|
| 139 |
+
input = input.type('torch.cuda.FloatTensor')
|
| 140 |
+
elif input.type() == 'torch.cuda.FloatTensor' and 'cpu' in self.device_list[i]:
|
| 141 |
+
input = input.type('torch.FloatTensor')
|
| 142 |
+
return input
|
| 143 |
+
|
| 144 |
+
def forward(self, input):
|
| 145 |
+
for i, chunk in enumerate(self.chunks):
|
| 146 |
+
if i < len(self.chunks) -1:
|
| 147 |
+
input = self.c(chunk(self.c(input, i).to(self.device_list[i])), i+1).to(self.device_list[i+1])
|
| 148 |
+
else:
|
| 149 |
+
input = chunk(input)
|
| 150 |
+
return input
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def buildSequential(channel_list, pooling):
|
| 155 |
+
layers = []
|
| 156 |
+
in_channels = 3
|
| 157 |
+
if pooling == 'max':
|
| 158 |
+
pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
| 159 |
+
elif pooling == 'avg':
|
| 160 |
+
pool2d = nn.AvgPool2d(kernel_size=2, stride=2)
|
| 161 |
+
else:
|
| 162 |
+
raise ValueError("Unrecognized pooling parameter")
|
| 163 |
+
for c in channel_list:
|
| 164 |
+
if c == 'P':
|
| 165 |
+
layers += [pool2d]
|
| 166 |
+
else:
|
| 167 |
+
conv2d = nn.Conv2d(in_channels, c, kernel_size=3, padding=1)
|
| 168 |
+
layers += [conv2d, nn.ReLU(inplace=True)]
|
| 169 |
+
in_channels = c
|
| 170 |
+
return nn.Sequential(*layers)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
channel_list = {
|
| 174 |
+
'VGG-16p': [24, 22, 'P', 41, 51, 'P', 108, 89, 111, 'P', 184, 276, 228, 'P', 512, 512, 512, 'P'],
|
| 175 |
+
'VGG-16': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 'P', 512, 512, 512, 'P', 512, 512, 512, 'P'],
|
| 176 |
+
'VGG-19': [64, 64, 'P', 128, 128, 'P', 256, 256, 256, 256, 'P', 512, 512, 512, 512, 'P', 512, 512, 512, 512, 'P'],
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
nin_dict = {
|
| 180 |
+
'C': ['conv1', 'cccp1', 'cccp2', 'conv2', 'cccp3', 'cccp4', 'conv3', 'cccp5', 'cccp6', 'conv4-1024', 'cccp7-1024', 'cccp8-1024'],
|
| 181 |
+
'R': ['relu0', 'relu1', 'relu2', 'relu3', 'relu5', 'relu6', 'relu7', 'relu8', 'relu9', 'relu10', 'relu11', 'relu12'],
|
| 182 |
+
'P': ['pool1', 'pool2', 'pool3', 'pool4'],
|
| 183 |
+
'D': ['drop'],
|
| 184 |
+
}
|
| 185 |
+
vgg16_dict = {
|
| 186 |
+
'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3'],
|
| 187 |
+
'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu4_1', 'relu4_2', 'relu4_3', 'relu5_1', 'relu5_2', 'relu5_3'],
|
| 188 |
+
'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
|
| 189 |
+
}
|
| 190 |
+
vgg19_dict = {
|
| 191 |
+
'C': ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4'],
|
| 192 |
+
'R': ['relu1_1', 'relu1_2', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu3_3', 'relu3_4', 'relu4_1', 'relu4_2', 'relu4_3', 'relu4_4', 'relu5_1', 'relu5_2', 'relu5_3', 'relu5_4'],
|
| 193 |
+
'P': ['pool1', 'pool2', 'pool3', 'pool4', 'pool5'],
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def modelSelector(model_file, pooling):
|
| 198 |
+
vgg_list = ["fcn32s", "pruning", "sod", "vgg"]
|
| 199 |
+
if any(name in model_file for name in vgg_list):
|
| 200 |
+
if "pruning" in model_file:
|
| 201 |
+
print("VGG-16 Architecture Detected")
|
| 202 |
+
print("Using The Channel Pruning Model")
|
| 203 |
+
cnn, layerList = VGG_PRUNED(buildSequential(channel_list['VGG-16p'], pooling)), vgg16_dict
|
| 204 |
+
elif "fcn32s" in model_file:
|
| 205 |
+
print("VGG-16 Architecture Detected")
|
| 206 |
+
print("Using the fcn32s-heavy-pascal Model")
|
| 207 |
+
cnn, layerList = VGG_FCN32S(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
|
| 208 |
+
elif "sod" in model_file:
|
| 209 |
+
print("VGG-16 Architecture Detected")
|
| 210 |
+
print("Using The SOD Fintune Model")
|
| 211 |
+
cnn, layerList = VGG_SOD(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
|
| 212 |
+
elif "19" in model_file:
|
| 213 |
+
print("VGG-19 Architecture Detected")
|
| 214 |
+
cnn, layerList = VGG(buildSequential(channel_list['VGG-19'], pooling)), vgg19_dict
|
| 215 |
+
elif "16" in model_file:
|
| 216 |
+
print("VGG-16 Architecture Detected")
|
| 217 |
+
cnn, layerList = VGG(buildSequential(channel_list['VGG-16'], pooling)), vgg16_dict
|
| 218 |
+
else:
|
| 219 |
+
raise ValueError("VGG architecture not recognized.")
|
| 220 |
+
elif "nin" in model_file:
|
| 221 |
+
print("NIN Architecture Detected")
|
| 222 |
+
cnn, layerList = NIN(pooling), nin_dict
|
| 223 |
+
else:
|
| 224 |
+
raise ValueError("Model architecture not recognized.")
|
| 225 |
+
return cnn, layerList
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Print like Torch7/loadcaffe
|
| 229 |
+
def print_loadcaffe(cnn, layerList):
|
| 230 |
+
c = 0
|
| 231 |
+
for l in list(cnn):
|
| 232 |
+
if "Conv2d" in str(l):
|
| 233 |
+
in_c, out_c, ks = str(l.in_channels), str(l.out_channels), str(l.kernel_size)
|
| 234 |
+
print(layerList['C'][c] +": " + (out_c + " " + in_c + " " + ks).replace(")",'').replace("(",'').replace(",",'') )
|
| 235 |
+
c+=1
|
| 236 |
+
if c == len(layerList['C']):
|
| 237 |
+
break
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Load the model, and configure pooling layer type
|
| 241 |
+
def loadCaffemodel(model_file, pooling, use_gpu, disable_check):
|
| 242 |
+
cnn, layerList = modelSelector(str(model_file).lower(), pooling)
|
| 243 |
+
|
| 244 |
+
cnn.load_state_dict(torch.load(model_file), strict=(not disable_check))
|
| 245 |
+
print("Successfully loaded " + str(model_file))
|
| 246 |
+
|
| 247 |
+
# Maybe convert the model to cuda now, to avoid later issues
|
| 248 |
+
if "c" not in str(use_gpu).lower() or "c" not in str(use_gpu[0]).lower():
|
| 249 |
+
cnn = cnn.cuda()
|
| 250 |
+
cnn = cnn.features
|
| 251 |
+
|
| 252 |
+
print_loadcaffe(cnn, layerList)
|
| 253 |
+
|
| 254 |
+
return cnn, layerList
|