# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. import spaces import subprocess import os import sys # --- ETAPA 1: Clonar o Repositório do GitHub --- repo_name = "SeedVR" if not os.path.exists(repo_name): print(f"Clonando o repositório {repo_name} do GitHub...") subprocess.run(f"git clone https://github.com/ByteDance-Seed/{repo_name}.git", shell=True, check=True) # --- ETAPA 2: Mudar para o Diretório e Configurar o Ambiente --- os.chdir(repo_name) print(f"Diretório de trabalho alterado para: {os.getcwd()}") sys.path.insert(0, os.path.abspath('.')) print(f"Diretório atual adicionado ao sys.path.") # --- ETAPA 3: Instalar Dependências Corretamente --- python_executable = sys.executable # CORREÇÃO: Forçar uma versão do NumPy < 2.0 para evitar conflitos de compatibilidade. print("Instalando NumPy compatível...") subprocess.run([python_executable, "-m", "pip", "install", "numpy<2.0"], check=True) # Filtrar requirements.txt para evitar conflitos com torch/torchvision pré-instalados print("Filtrando requirements.txt...") with open("requirements.txt", "r") as f_in, open("filtered_requirements.txt", "w") as f_out: for line in f_in: if not line.strip().startswith(('torch', 'torchvision')): f_out.write(line) print("Instalando dependências filtradas...") subprocess.run([python_executable, "-m", "pip", "install", "-r", "filtered_requirements.txt"], check=True) print("Instalando flash-attn...") subprocess.run([python_executable, "-m", "pip", "install", "flash-attn==2.5.9.post1", "--no-build-isolation"], check=True) from pathlib import Path from urllib.parse import urlparse from torch.hub import download_url_to_file, get_dir def load_file_from_url(url, model_dir='.', progress=True, file_name=None): os.makedirs(model_dir, exist_ok=True) if not file_name: parts = urlparse(url) file_name = os.path.basename(parts.path) cached_file = os.path.join(model_dir, file_name) if not os.path.exists(cached_file): print(f'Baixando: "{url}" para {cached_file}\n') download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) return cached_file apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl' apex_wheel_path = load_file_from_url(url=apex_url) print("Instalando Apex a partir do wheel baixado...") subprocess.run([python_executable, "-m", "pip", "install", "--force-reinstall", "--no-cache-dir", apex_wheel_path], check=True) print("✅ Configuração do Apex concluída.") # --- ETAPA 4: Baixar os Modelos Pré-treinados --- print("Baixando modelos pré-treinados...") import torch pretrain_model_url = { 'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth', 'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth', 'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt', 'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt', } Path('./ckpts').mkdir(exist_ok=True) for key, url in pretrain_model_url.items(): model_dir = './ckpts' if key in ['vae', 'dit'] else '.' load_file_from_url(url=url, model_dir=model_dir) # --- ETAPA 5: Executar a Aplicação Principal --- import mediapy from einops import rearrange from omegaconf import OmegaConf import datetime from tqdm import tqdm import gc from PIL import Image import gradio as gr import uuid import mimetypes import torchvision.transforms as T from torchvision.transforms import Compose, Lambda, Normalize from torchvision.io.video import read_video from data.image.transforms.divisible_crop import DivisibleCrop from data.image.transforms.na_resize import NaResize from data.video.transforms.rearrange import Rearrange from common.config import load_config from common.distributed import init_torch from common.seed import set_seed from projects.video_diffusion_sr.infer import VideoDiffusionInfer from common.distributed.ops import sync_data os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = "12355" os.environ["RANK"] = str(0) os.environ["WORLD_SIZE"] = str(1) use_colorfix = os.path.exists("projects/video_diffusion_sr/color_fix.py") if use_colorfix: from projects.video_diffusion_sr.color_fix import wavelet_reconstruction def configure_runner(): config = load_config('configs_3b/main.yaml') runner = VideoDiffusionInfer(config) OmegaConf.set_readonly(runner.config, False) init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600)) runner.configure_dit_model(device="cuda", checkpoint='ckpts/seedvr2_ema_3b.pth') runner.configure_vae_model() if hasattr(runner.vae, "set_memory_limit"): runner.vae.set_memory_limit(**runner.config.vae.memory_limit) return runner def generation_step(runner, text_embeds_dict, cond_latents): def _move_to_cuda(x): return [i.to("cuda") for i in x] noises, aug_noises = [torch.randn_like(l) for l in cond_latents], [torch.randn_like(l) for l in cond_latents] noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0) noises, aug_noises, cond_latents = map(_move_to_cuda, (noises, aug_noises, cond_latents)) def _add_noise(x, aug_noise): t = torch.tensor([100.0], device="cuda") shape = torch.tensor(x.shape[1:], device="cuda")[None] t = runner.timestep_transform(t, shape) return runner.schedule.forward(x, aug_noise, t) conditions = [runner.get_condition(n, task="sr", latent_blur=_add_noise(l, an)) for n, an, l in zip(noises, aug_noises, cond_latents)] with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True): video_tensors = runner.inference(noises=noises, conditions=conditions, **text_embeds_dict) return [rearrange(v, "c t h w -> t c h w") for v in video_tensors] @spaces.GPU def generation_loop(video_path, seed=666, fps_out=24): if video_path is None: return None, None, None runner = configure_runner() # Adicionado `weights_only=True` para segurança e para suprimir o aviso text_embeds = { "texts_pos": [torch.load('pos_emb.pt', weights_only=True).to("cuda")], "texts_neg": [torch.load('neg_emb.pt', weights_only=True).to("cuda")] } runner.configure_diffusion() set_seed(int(seed)) os.makedirs("output", exist_ok=True) # CORREÇÃO: Fornecer os argumentos que faltam para NaResize. res_h, res_w = 1280, 720 transform = Compose([ NaResize(resolution=(res_h * res_w)**0.5, mode="area", downsample_only=False), Lambda(lambda x: torch.clamp(x, 0.0, 1.0)), DivisibleCrop((16, 16)), Normalize(0.5, 0.5), Rearrange("t c h w -> c t h w") ]) media_type, _ = mimetypes.guess_type(video_path) is_video = media_type and media_type.startswith("video") if is_video: video, _, _ = read_video(video_path, output_format="TCHW") video = video[:121] / 255.0 output_path = os.path.join("output", f"{uuid.uuid4()}.mp4") else: video = T.ToTensor()(Image.open(video_path).convert("RGB")).unsqueeze(0) output_path = os.path.join("output", f"{uuid.uuid4()}.png") cond_latents = [transform(video.to("cuda"))] ori_length = cond_latents[0].size(2) cond_latents = runner.vae_encode(cond_latents) samples = generation_step(runner, text_embeds, cond_latents) sample = samples[0][:ori_length].cpu() sample = rearrange(sample, "t c h w -> t h w c").clip(-1, 1).add(1).mul(127.5).byte().numpy() if is_video: mediapy.write_video(output_path, sample, fps=fps_out) return None, output_path, output_path else: mediapy.write_image(output_path, sample[0]) return output_path, None, output_path with gr.Blocks(title="SeedVR") as demo: gr.HTML(f"""

Demonstração oficial do Gradio para SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training.
🔥 SeedVR2 é um algoritmo de restauração de imagem e vídeo em um passo para conteúdo do mundo real e AIGC.

""") with gr.Row(): input_file = gr.File(label="Carregar Imagem ou Vídeo") with gr.Column(): seed = gr.Number(label="Seed", value=42) fps = gr.Number(label="FPS de Saída", value=24) run_button = gr.Button("Executar") output_image = gr.Image(label="Imagem de Saída") output_video = gr.Video(label="Vídeo de Saída") download_link = gr.File(label="Baixar Resultado") run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link]) demo.queue().launch(share=True)