Spaces:
Runtime error
Runtime error
File size: 10,665 Bytes
9fcad90 f5c99ab 18359c8 b5023f2 0c097db b5023f2 0c097db f5c99ab 5137a03 6b1cbcf 5137a03 3dce029 5137a03 8434eb9 3dce029 f5c99ab 8434eb9 f5c99ab 3dce029 9fcad90 5137a03 6b1cbcf 8434eb9 2d69166 0c097db 8434eb9 9fcad90 2d69166 9fcad90 2d69166 9fcad90 2d69166 9fcad90 2d69166 9fcad90 2d69166 9fcad90 0c097db 9fcad90 0c097db 478560e 6b1cbcf 478560e 9fcad90 6b1cbcf 3dce029 5137a03 3dce029 2d69166 6b1cbcf 478560e 0c097db 3dce029 0c097db f5c99ab 9a0d6a9 f5c99ab 3dce029 f5c99ab 8434eb9 0c097db f5c99ab 0c097db 9fcad90 0c097db 6b1cbcf 0c097db f5c99ab 0c097db f5c99ab 0c097db f5c99ab 6b1cbcf f5c99ab 0c097db 3dce029 0c097db 3dce029 6b1cbcf 18359c8 3dce029 2d69166 3dce029 9fcad90 3dce029 6b1cbcf 3dce029 f5c99ab 2d69166 3dce029 f5c99ab 3dce029 f5c99ab 0c097db 8434eb9 f5c99ab 9fcad90 f5c99ab 8434eb9 f5c99ab 9a0d6a9 f5c99ab 6b1cbcf f5c99ab 3dce029 6b1cbcf c6fd0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# managers/seedvr_manager.py
#
# Copyright (C) 2025 Carlos Rodrigues dos Santos
#
# Version: 2.3.5
#
# This version uses the optimal strategy of cloning the self-contained Hugging Face
# Space repository and uses the full, correct import paths to resolve all
# ModuleNotFoundErrors, while retaining necessary runtime patches.
import torch
import torch.distributed as dist
import os
import gc
import logging
import sys
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
import gradio as gr
import mediapy
from einops import rearrange
from tools.tensor_utils import wavelet_reconstruction
logger = logging.getLogger(__name__)
# --- Dependency Management ---
DEPS_DIR = Path("./deps")
SEEDVR_SPACE_DIR = DEPS_DIR / "SeedVR_Space"
SEEDVR_SPACE_URL = "https://huggingface.co/spaces/ByteDance-Seed/SeedVR2-3B"
VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml"
def setup_seedvr_dependencies():
"""
Ensures the SeedVR Space repository is cloned and available in the sys.path.
"""
if not SEEDVR_SPACE_DIR.exists():
logger.info(f"SeedVR Space not found at '{SEEDVR_SPACE_DIR}'. Cloning from Hugging Face...")
try:
DEPS_DIR.mkdir(exist_ok=True)
subprocess.run(
["git", "clone", SEEDVR_SPACE_URL, str(SEEDVR_SPACE_DIR)],
check=True, capture_output=True, text=True
)
logger.info("SeedVR Space cloned successfully.")
except subprocess.CalledProcessError as e:
logger.error(f"Failed to clone SeedVR Space. Git stderr: {e.stderr}")
raise RuntimeError("Could not clone the required SeedVR dependency from Hugging Face.")
else:
logger.info("Found local SeedVR Space repository.")
if str(SEEDVR_SPACE_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(SEEDVR_SPACE_DIR.resolve()))
logger.info(f"Added '{SEEDVR_SPACE_DIR.resolve()}' to sys.path.")
setup_seedvr_dependencies()
# Use full import paths relative to the root of the cloned repository
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from omegaconf import OmegaConf
def _load_file_from_url(url, model_dir='./', file_name=None):
os.makedirs(model_dir, exist_ok=True)
filename = file_name or os.path.basename(urlparse(url).path)
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
logger.info(f'Downloading: "{url}" to {cached_file}')
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
return cached_file
class SeedVrManager:
"""Manages the SeedVR model for HD Mastering tasks."""
def __init__(self, workspace_dir="deformes_workspace"):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.runner = None
self.workspace_dir = workspace_dir
self.is_initialized = False
self._original_barrier = None
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
def _download_models_and_configs(self):
"""Downloads the necessary checkpoints AND the missing VAE config file."""
logger.info("Verifying and downloading SeedVR2 models and configs...")
ckpt_dir = SEEDVR_SPACE_DIR / 'ckpts'
config_dir = SEEDVR_SPACE_DIR / 'configs' / 'vae'
ckpt_dir.mkdir(exist_ok=True)
config_dir.mkdir(parents=True, exist_ok=True)
_load_file_from_url(url=VAE_CONFIG_URL, model_dir=str(config_dir))
pretrain_model_urls = {
'vae_ckpt': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
}
for key, url in pretrain_model_urls.items():
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
logger.info("SeedVR2 models and configs downloaded successfully.")
def _initialize_runner(self, model_version: str):
"""Loads and configures the SeedVR model, with patches for single-GPU inference."""
if self.runner is not None: return
self._download_models_and_configs()
if dist.is_available() and not dist.is_initialized():
logger.info("Applying patch to disable torch.distributed.barrier for single-GPU inference.")
self._original_barrier = dist.barrier
dist.barrier = lambda *args, **kwargs: None
logger.info(f"Initializing SeedVR2 {model_version} runner...")
if model_version == '3B':
config_path = SEEDVR_SPACE_DIR / 'configs_3b' / 'main.yaml'
checkpoint_path = SEEDVR_SPACE_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
elif model_version == '7B':
config_path = SEEDVR_SPACE_DIR / 'configs_7b' / 'main.yaml'
checkpoint_path = SEEDVR_SPACE_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
else:
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
try:
config = load_config(str(config_path))
except FileNotFoundError:
logger.warning("Caught expected FileNotFoundError. Loading config manually.")
config = OmegaConf.load(str(config_path))
correct_vae_config_path = SEEDVR_SPACE_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml'
vae_config = OmegaConf.load(str(correct_vae_config_path))
config.vae = vae_config
logger.info("Configuration loaded and patched manually.")
self.runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(self.runner.config, False)
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
self.runner.configure_vae_model()
if hasattr(self.runner.vae, "set_memory_limit"):
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
self.is_initialized = True
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
def _unload_runner(self):
"""Unloads the runner from VRAM and restores patches."""
if self.runner is not None:
del self.runner; self.runner = None
gc.collect(); torch.cuda.empty_cache()
self.is_initialized = False
logger.info("SeedVR runner unloaded from VRAM.")
if self._original_barrier is not None:
logger.info("Restoring original torch.distributed.barrier function.")
dist.barrier = self._original_barrier
self._original_barrier = None
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
model_version: str = '3B', steps: int = 50, seed: int = 666,
progress: gr.Progress = None) -> str:
"""Applies HD enhancement to a video."""
try:
self._initialize_runner(model_version)
set_seed(seed, same_across_ranks=True)
self.runner.config.diffusion.timesteps.sampling.steps = steps
self.runner.configure_diffusion()
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
res_h, res_w = video_tensor.shape[-2:]
video_transform = Compose([
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
])
cond_latents = [video_transform(video_tensor.to(self.device))]
input_videos = cond_latents
self.runner.dit.to("cpu")
self.runner.vae.to(self.device)
cond_latents = self.runner.vae_encode(cond_latents)
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.dit.to(self.device)
pos_emb_path = SEEDVR_SPACE_DIR / 'ckpts' / 'pos_emb.pt'
neg_emb_path = SEEDVR_SPACE_DIR / 'ckpts' / 'neg_emb.pt'
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
noises = [torch.randn_like(latent) for latent in cond_latents]
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.vae.to(self.device)
samples = self.runner.vae_decode(video_tensors)
final_sample = samples[0]
input_video_sample = input_videos[0]
if final_sample.shape[1] < input_video_sample.shape[1]:
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
final_sample = wavelet_reconstruction(rearrange(final_sample, "c t h w -> t c h w"), rearrange(input_video_sample, "c t h w -> t c h w"))
final_sample = rearrange(final_sample, "t c h w -> t h w c")
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
mediapy.write_video(output_video_path, final_sample_np, fps=24)
logger.info(f"HD Mastered video saved to: {output_video_path}")
return output_video_path
finally:
self._unload_runner()
# --- Singleton Instance ---
seedvr_manager_singleton = SeedVrManager() |