File size: 23,837 Bytes
501fd32
 
 
 
 
 
eabae34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501fd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca4faa
5f2000a
 
501fd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# app.py
#
# Copyright (C) August 4, 2025  Carlos Rodrigues dos Santos
#
# Version: 2.3.0
#
# Contact:
# Carlos Rodrigues dos Santos
# [email protected]
#
# Related Repositories and Projects:
# GitHub: https://github.com/carlex22/Aduc-sdr
# YouTube (Results): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
# PENDING PATENT NOTICE: The ADUC method and system implemented in this
# software is in the process of being patented. Please see NOTICE.md for details.

import gradio as gr
import yaml
import logging
import os
import sys
import shutil
import time
import json

from aduc_orchestrator import AducOrchestrator

# --- CUSTOM UI THEME DEFINITION ---
# This theme provides a professional, dark-mode look and feel, suitable for creative tools.
cinematic_theme = gr.themes.Base(
    primary_hue=gr.themes.colors.indigo,
    secondary_hue=gr.themes.colors.purple,
    neutral_hue=gr.themes.colors.slate,
    font=(gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"),
).set(
    # -- Colors --
    body_background_fill="#111827",  # Slate 900
    body_text_color="#E5E7EB",      # Slate 200
    
    # -- Buttons --
    button_primary_background_fill="linear-gradient(90deg, #4F46E5, #8B5CF6)", # Gradient Indigo -> Purple
    button_primary_text_color="#FFFFFF",
    button_secondary_background_fill="#374151", # Slate 700
    button_secondary_border_color="#4B5563",
    button_secondary_text_color="#E5E7EB",

    # -- Blocks and Containers --
    block_background_fill="#1F2937", # Slate 800
    block_border_width="1px",
    block_border_color="#374151",    # Slate 700
    block_label_background_fill="#374151",
    block_label_text_color="#E5E7EB",
    block_title_text_color="#FFFFFF",

    # -- Input Fields --
    input_background_fill="#374151",
    input_border_color="#4B5563",
    input_placeholder_color="#9CA3AF",
    
    # -- Spacing and Radius --
    #block_radius_size="lg",
    #spacing_size="lg",
    #layout_gap="lg",
)

# --- 1. CONFIGURATION AND INITIALIZATION ---
LOG_FILE_PATH = "aduc_log.txt"
if os.path.exists(LOG_FILE_PATH):
    os.remove(LOG_FILE_PATH)

log_format = '%(asctime)s - %(levelname)s - [%(name)s:%(funcName)s] - %(message)s'
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.handlers.clear()
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(stream_handler)
file_handler = logging.FileHandler(LOG_FILE_PATH, mode='w', encoding='utf-8')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(file_handler)
logger = logging.getLogger(__name__)

i18n = {}
try:
    with open("i18n.json", "r", encoding="utf-8") as f: i18n = json.load(f)
except Exception as e:
    logger.error(f"Error loading i18n.json: {e}")
    i18n = {"pt": {}, "en": {}, "zh": {}}
if 'pt' not in i18n: i18n['pt'] = i18n.get('en', {})
if 'en' not in i18n: i18n['en'] = {}
if 'zh' not in i18n: i18n['zh'] = i18n.get('en', {})

try:
    with open("config.yaml", 'r') as f: config = yaml.safe_load(f)
    WORKSPACE_DIR = config['application']['workspace_dir']
    aduc = AducOrchestrator(workspace_dir=WORKSPACE_DIR)
    logger.info("ADUC Orchestrator and Specialists initialized successfully.")
except Exception as e:
    logger.error(f"CRITICAL ERROR during initialization: {e}", exc_info=True)
    exit()

# --- 2. UI WRAPPER FUNCTIONS ---
def run_pre_production_wrapper(prompt, num_keyframes, ref_files, resolution_str, duration_per_fragment, progress=gr.Progress()):
    if not ref_files: raise gr.Error("Please provide at least one reference image.")
    ref_paths = [aduc.process_image_for_story(f.name, 480, f"ref_processed_{i}.png") for i, f in enumerate(ref_files)]
    progress(0.1, desc="Generating storyboard...")
    storyboard, initial_ref_path, _ = aduc.task_generate_storyboard(prompt, num_keyframes, ref_paths, progress)
    resolution = int(resolution_str.split('x')[0])
    def cb_factory(scene_index, total_scenes):
        start_time = time.time()
        total_steps = 12
        def callback(pipe_self, step, timestep, callback_kwargs):
            elapsed, current_step = time.time() - start_time, step + 1
            if current_step > 0:
                it_per_sec = current_step / elapsed
                eta = (total_steps - current_step) / it_per_sec if it_per_sec > 0 else 0
                desc = f"Keyframe {scene_index}/{total_scenes}: {int((current_step/total_steps)*100)}% | {current_step}/{total_steps} [{elapsed:.0f}s<{eta:.0f}s, {it_per_sec:.2f}it/s]"
                base_progress = 0.2 + (scene_index - 1) * (0.8 / total_scenes)
                step_progress = (current_step / total_steps) * (0.8 / total_scenes)
                progress(base_progress + step_progress, desc=desc)
            return {}
        return callback
    final_keyframes = aduc.task_generate_keyframes(storyboard, initial_ref_path, prompt, resolution, cb_factory)
    return gr.update(value=storyboard), gr.update(value=final_keyframes), gr.update(visible=True, open=True)

def run_pre_production_photo_wrapper(prompt, num_keyframes, ref_files, progress=gr.Progress()):
    if not ref_files or len(ref_files) < 2: raise gr.Error("Photographer Mode requires at least 2 images: one base and one for the scene pool.")
    base_ref_paths = [aduc.process_image_for_story(ref_files[0].name, 480, "base_ref_processed_0.png")]
    pool_ref_paths = [aduc.process_image_for_story(f.name, 480, f"pool_ref_{i+1}.png") for i, f in enumerate(ref_files[1:])]
    progress(0.1, desc="Generating storyboard...")
    storyboard, _, _ = aduc.task_generate_storyboard(prompt, num_keyframes, base_ref_paths, progress)
    progress(0.5, desc="AI Photographer is selecting the best scenes...")
    selected_keyframes = aduc.task_select_keyframes(storyboard, base_ref_paths, pool_ref_paths)
    return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True)

def run_original_production_wrapper(keyframes, prompt, duration, trim_percent, handler_strength, dest_strength, guidance_scale, stg_scale, steps, resolution, progress=gr.Progress()):
    yield {original_video_output: gr.update(value=None, visible=True, label="๐ŸŽฌ Producing your original master video... Please wait."), final_video_output: gr.update(value=None, visible=True, label="๐ŸŽฌ Production in progress..."), step4_accordion: gr.update(visible=False)}
    res = int(resolution.split('x')[0])
    result = aduc.task_produce_original_movie(keyframes, prompt, duration, int(trim_percent), handler_strength, dest_strength, guidance_scale, stg_scale, int(steps), res, use_continuity_director=True, progress=progress)
    yield {original_video_output: gr.update(value=result["final_path"], label="โœ… Original Master Video"), final_video_output: gr.update(value=result["final_path"], label="Final Film (Result of the Last Step)"), step4_accordion: gr.update(visible=True, open=True), original_latents_paths_state: result["latent_paths"], original_video_path_state: result["final_path"], current_source_video_state: result["final_path"]}

def run_upscaler_wrapper(latent_paths, chunk_size, progress=gr.Progress()):
    if not latent_paths: raise gr.Error("Cannot run Upscaler. No original latents found. Please complete Step 3 first.")
    yield {upscaler_video_output: gr.update(value=None, visible=True, label="Upscaling latents and decoding video..."), final_video_output: gr.update(label="Post-Production in progress: Latent Upscaling...")}
    final_path = None
    for update in aduc.task_run_latent_upscaler(latent_paths, int(chunk_size), progress=progress): final_path = update['final_path']
    yield {upscaler_video_output: gr.update(value=final_path, label="โœ… Latent Upscale Complete"), final_video_output: gr.update(value=final_path), upscaled_video_path_state: final_path, current_source_video_state: final_path}

def run_hd_wrapper(source_video, model_version, steps, global_prompt, progress=gr.Progress()):
    if not source_video: raise gr.Error("Cannot run HD Mastering. No source video found. Please complete a previous step first.")
    yield {hd_video_output: gr.update(value=None, visible=True, label="Applying HD mastering... This may take a while."), final_video_output: gr.update(label="Post-Production in progress: HD Mastering...")}
    final_path = None
    for update in aduc.task_run_hd_mastering(source_video, model_version, int(steps), global_prompt, progress=progress): final_path = update['final_path']
    yield {hd_video_output: gr.update(value=final_path, label="โœ… HD Mastering Complete"), final_video_output: gr.update(value=final_path), hd_video_path_state: final_path, current_source_video_state: final_path}

def run_audio_wrapper(source_video, audio_prompt, global_prompt, progress=gr.Progress()):
    if not source_video: raise gr.Error("Cannot run Audio Generation. No source video found. Please complete a previous step first.")
    yield {audio_video_output: gr.update(value=None, visible=True, label="Generating audio and muxing..."), final_video_output: gr.update(label="Post-Production in progress: Audio Generation...")}
    final_audio_prompt = audio_prompt if audio_prompt and audio_prompt.strip() else global_prompt
    final_path = None
    for update in aduc.task_run_audio_generation(source_video, final_audio_prompt, progress=progress): final_path = update['final_path']
    yield {audio_video_output: gr.update(value=final_path, label="โœ… Audio Generation Complete"), final_video_output: gr.update(value=final_path)}

def get_log_content():
    try:
        with open(LOG_FILE_PATH, "r", encoding="utf-8") as f: return f.read()
    except FileNotFoundError:
        return "Log file not yet created. Start a generation."

def update_ui_language(lang_emoji):
    lang_code_map = {"๐Ÿ‡ง๐Ÿ‡ท": "pt", "๐Ÿ‡บ๐Ÿ‡ธ": "en", "๐Ÿ‡จ๐Ÿ‡ณ": "zh"}
    lang_code = lang_code_map.get(lang_emoji, "en")
    lang_map = i18n.get(lang_code, i18n.get('en', {}))
    # ... This dictionary mapping will be long, so it's defined once in the main block

# --- 3. GRADIO UI DEFINITION ---
with gr.Blocks(theme=cinematic_theme, css="style.css") as demo:
    default_lang = i18n.get('pt', {})
    
    original_latents_paths_state = gr.State(value=None)
    original_video_path_state = gr.State(value=None)
    upscaled_video_path_state = gr.State(value=None)
    hd_video_path_state = gr.State(value=None)
    current_source_video_state = gr.State(value=None)

    title_md = gr.Markdown(f"<h1>{default_lang.get('app_title')}</h1>")
    subtitle_md = gr.Markdown(f"<p>{default_lang.get('app_subtitle')}</p>")
    with gr.Row():
        lang_selector = gr.Radio(["๐Ÿ‡ง๐Ÿ‡ท", "๐Ÿ‡บ๐Ÿ‡ธ", "๐Ÿ‡จ๐Ÿ‡ณ"], value="๐Ÿ‡ง๐Ÿ‡ท", label=default_lang.get('lang_selector_label'))
        resolution_selector = gr.Radio(["480x480", "720x720", "960x960"], value="480x480", label="Base Resolution")

    with gr.Accordion(default_lang.get('step1_accordion'), open=True) as step1_accordion:
        prompt_input = gr.Textbox(label=default_lang.get('prompt_label'), value="A majestic lion walks across the savanna, sits down, and then roars at the setting sun.")
        ref_image_input = gr.File(label=default_lang.get('ref_images_label'), file_count="multiple", file_types=["image"])
        with gr.Row():
            num_keyframes_slider = gr.Slider(minimum=3, maximum=42, value=5, step=1, label=default_lang.get('keyframes_label'))
            duration_per_fragment_slider = gr.Slider(label=default_lang.get('duration_label'), info=default_lang.get('duration_info'), minimum=2.0, maximum=10.0, value=4.0, step=0.1)
        with gr.Row():
            storyboard_and_keyframes_button = gr.Button(default_lang.get('storyboard_and_keyframes_button'), variant="primary")
            storyboard_from_photos_button = gr.Button(default_lang.get('storyboard_from_photos_button'), variant="secondary")
        step1_mode_b_info_md = gr.Markdown(f"*{default_lang.get('step1_mode_b_info')}*")
        storyboard_output = gr.JSON(label=default_lang.get('storyboard_output_label'))
        keyframe_gallery = gr.Gallery(label=default_lang.get('keyframes_gallery_label'), visible=True, object_fit="contain", height="auto", type="filepath")

    with gr.Accordion(default_lang.get('step3_accordion'), open=False, visible=False) as step3_accordion:
        step3_description_md = gr.Markdown(default_lang.get('step3_description'))
        with gr.Accordion(default_lang.get('ltx_advanced_options'), open=False) as ltx_advanced_options_accordion:
            with gr.Accordion(default_lang.get('causality_controls_title'), open=True) as causality_accordion:
                trim_percent_slider = gr.Slider(minimum=10, maximum=90, value=50, step=5, label=default_lang.get('trim_percent_label'), info=default_lang.get('trim_percent_info'))
                with gr.Row():
                    forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info'))
                    convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info'))
            with gr.Accordion(default_lang.get('ltx_pipeline_options'), open=True) as ltx_pipeline_accordion:
                with gr.Row():
                    guidance_scale_slider = gr.Slider(minimum=1.0, maximum=10.0, value=2.0, step=0.1, label=default_lang.get('guidance_scale_label'), info=default_lang.get('guidance_scale_info'))
                    stg_scale_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.025, step=0.005, label=default_lang.get('stg_scale_label'), info=default_lang.get('stg_scale_info'))
                inference_steps_slider = gr.Slider(minimum=10, maximum=50, value=20, step=1, label=default_lang.get('steps_label'), info=default_lang.get('steps_info'))
        produce_original_button = gr.Button(default_lang.get('produce_original_button'), variant="primary")
        original_video_output = gr.Video(label="Original Master Video", visible=False, interactive=False)

    with gr.Accordion(default_lang.get('step4_accordion'), open=False, visible=False) as step4_accordion:
        step4_description_md = gr.Markdown(default_lang.get('step4_description'))
        with gr.Accordion(default_lang.get('sub_step_a_upscaler'), open=True) as sub_step_a_accordion:
            upscaler_description_md = gr.Markdown(default_lang.get('upscaler_description'))
            with gr.Accordion(default_lang.get('upscaler_options'), open=False) as upscaler_options_accordion:
                upscaler_chunk_size_slider = gr.Slider(minimum=1, maximum=10, value=2, step=1, label=default_lang.get('upscaler_chunk_size_label'), info=default_lang.get('upscaler_chunk_size_info'))
            run_upscaler_button = gr.Button(default_lang.get('run_upscaler_button'), variant="secondary")
            upscaler_video_output = gr.Video(label="Upscaled Video", visible=False, interactive=False)
        with gr.Accordion(default_lang.get('sub_step_b_hd'), open=True) as sub_step_b_accordion:
            hd_description_md = gr.Markdown(default_lang.get('hd_description'))
            with gr.Accordion(default_lang.get('hd_options'), open=False) as hd_options_accordion:
                hd_model_radio = gr.Radio(["3B", "7B"], value="7B", label=default_lang.get('hd_model_label'))
                hd_steps_slider = gr.Slider(minimum=20, maximum=150, value=100, step=5, label=default_lang.get('hd_steps_label'), info=default_lang.get('hd_steps_info'))
            run_hd_button = gr.Button(default_lang.get('run_hd_button'), variant="secondary")
            hd_video_output = gr.Video(label="HD Mastered Video", visible=False, interactive=False)
        with gr.Accordion(default_lang.get('sub_step_c_audio'), open=True) as sub_step_c_accordion:
            audio_description_md = gr.Markdown(default_lang.get('audio_description'))
            with gr.Accordion(default_lang.get('audio_options'), open=False) as audio_options_accordion:
                audio_prompt_input = gr.Textbox(label=default_lang.get('audio_prompt_label'), info=default_lang.get('audio_prompt_info'), lines=3)
            run_audio_button = gr.Button(default_lang.get('run_audio_button'), variant="secondary")
            audio_video_output = gr.Video(label="Video with Audio", visible=False, interactive=False)

    final_video_output = gr.Video(label=default_lang.get('final_video_label'), visible=False, interactive=False)
    with gr.Accordion(default_lang.get('log_accordion_label'), open=False) as log_accordion:
        log_display = gr.Textbox(label=default_lang.get('log_display_label'), lines=20, interactive=False, autoscroll=True)
        update_log_button = gr.Button(default_lang.get('update_log_button'))

    # --- 4. UI EVENT CONNECTIONS ---
    all_ui_components = [title_md, subtitle_md, lang_selector, step1_accordion, prompt_input, ref_image_input, num_keyframes_slider, duration_per_fragment_slider, storyboard_and_keyframes_button, storyboard_from_photos_button, step1_mode_b_info_md, storyboard_output, keyframe_gallery, step3_accordion, step3_description_md, produce_original_button, ltx_advanced_options_accordion, causality_accordion, trim_percent_slider, forca_guia_slider, convergencia_destino_slider, ltx_pipeline_accordion, guidance_scale_slider, stg_scale_slider, inference_steps_slider, step4_accordion, step4_description_md, sub_step_a_accordion, upscaler_description_md, upscaler_options_accordion, upscaler_chunk_size_slider, run_upscaler_button, sub_step_b_accordion, hd_description_md, hd_options_accordion, hd_model_radio, hd_steps_slider, run_hd_button, sub_step_c_accordion, audio_description_md, audio_options_accordion, audio_prompt_input, run_audio_button, final_video_output, log_accordion, log_display, update_log_button]
    def create_lang_update_fn():
        def update_lang(lang_emoji):
            lang_code_map = {"๐Ÿ‡ง๐Ÿ‡ท": "pt", "๐Ÿ‡บ๐Ÿ‡ธ": "en", "๐Ÿ‡จ๐Ÿ‡ณ": "zh"}
            lang_code = lang_code_map.get(lang_emoji, "en")
            lang_map = i18n.get(lang_code, i18n.get('en', {}))
            return [gr.update(value=f"<h1>{lang_map.get('app_title')}</h1>"),gr.update(value=f"<p>{lang_map.get('app_subtitle')}</p>"),gr.update(label=lang_map.get('lang_selector_label')),gr.update(label=lang_map.get('step1_accordion')),gr.update(label=lang_map.get('prompt_label')),gr.update(label=lang_map.get('ref_images_label')),gr.update(label=lang_map.get('keyframes_label')),gr.update(label=lang_map.get('duration_label'), info=lang_map.get('duration_info')),gr.update(value=lang_map.get('storyboard_and_keyframes_button')),gr.update(value=lang_map.get('storyboard_from_photos_button')),gr.update(value=f"*{lang_map.get('step1_mode_b_info')}*"),gr.update(label=lang_map.get('storyboard_output_label')),gr.update(label=lang_map.get('keyframes_gallery_label')),gr.update(label=lang_map.get('step3_accordion')),gr.update(value=lang_map.get('step3_description')),gr.update(value=lang_map.get('produce_original_button')),gr.update(label=lang_map.get('ltx_advanced_options')),gr.update(label=lang_map.get('causality_controls_title')),gr.update(label=lang_map.get('trim_percent_label'), info=lang_map.get('trim_percent_info')),gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')),gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')),gr.update(label=lang_map.get('ltx_pipeline_options')),gr.update(label=lang_map.get('guidance_scale_label'), info=lang_map.get('guidance_scale_info')),gr.update(label=lang_map.get('stg_scale_label'), info=lang_map.get('stg_scale_info')),gr.update(label=lang_map.get('steps_label'), info=lang_map.get('steps_info')),gr.update(label=lang_map.get('step4_accordion')),gr.update(value=lang_map.get('step4_description')),gr.update(label=lang_map.get('sub_step_a_upscaler')),gr.update(value=lang_map.get('upscaler_description')),gr.update(label=lang_map.get('upscaler_options')),gr.update(label=lang_map.get('upscaler_chunk_size_label'), info=lang_map.get('upscaler_chunk_size_info')),gr.update(value=lang_map.get('run_upscaler_button')),gr.update(label=lang_map.get('sub_step_b_hd')),gr.update(value=lang_map.get('hd_description')),gr.update(label=lang_map.get('hd_options')),gr.update(label=lang_map.get('hd_model_label')),gr.update(label=lang_map.get('hd_steps_label'), info=lang_map.get('hd_steps_info')),gr.update(value=lang_map.get('run_hd_button')),gr.update(label=lang_map.get('sub_step_c_audio')),gr.update(value=lang_map.get('audio_description')),gr.update(label=lang_map.get('audio_options')),gr.update(label=lang_map.get('audio_prompt_label'), info=lang_map.get('audio_prompt_info')),gr.update(value=lang_map.get('run_audio_button')),gr.update(label=lang_map.get('final_video_label')),gr.update(label=lang_map.get('log_accordion_label')),gr.update(label=lang_map.get('log_display_label')),gr.update(value=lang_map.get('update_log_button'))]
        return update_lang
    lang_selector.change(fn=create_lang_update_fn(), inputs=lang_selector, outputs=all_ui_components)

    storyboard_and_keyframes_button.click(fn=run_pre_production_wrapper, inputs=[prompt_input, num_keyframes_slider, ref_image_input, resolution_selector, duration_per_fragment_slider], outputs=[storyboard_output, keyframe_gallery, step3_accordion])
    storyboard_from_photos_button.click(fn=run_pre_production_photo_wrapper, inputs=[prompt_input, num_keyframes_slider, ref_image_input], outputs=[storyboard_output, keyframe_gallery, step3_accordion])
    produce_original_button.click(fn=run_original_production_wrapper, inputs=[keyframe_gallery, prompt_input, duration_per_fragment_slider, trim_percent_slider, forca_guia_slider, convergencia_destino_slider, guidance_scale_slider, stg_scale_slider, inference_steps_slider, resolution_selector], outputs=[original_video_output, final_video_output, step4_accordion, original_latents_paths_state, original_video_path_state, current_source_video_state])
    run_upscaler_button.click(fn=run_upscaler_wrapper, inputs=[original_latents_paths_state, upscaler_chunk_size_slider], outputs=[upscaler_video_output, final_video_output, upscaled_video_path_state, current_source_video_state])
    run_hd_button.click(fn=run_hd_wrapper, inputs=[current_source_video_state, hd_model_radio, hd_steps_slider, prompt_input], outputs=[hd_video_output, final_video_output, hd_video_path_state, current_source_video_state])
    run_audio_button.click(fn=run_audio_wrapper, inputs=[current_source_video_state, audio_prompt_input, prompt_input], outputs=[audio_video_output, final_video_output])
    update_log_button.click(fn=get_log_content, inputs=[], outputs=[log_display])

# --- 5. APPLICATION LAUNCH ---
if __name__ == "__main__":
    if os.path.exists(WORKSPACE_DIR):
        logger.info(f"Clearing previous workspace at: {WORKSPACE_DIR}")
        shutil.rmtree(WORKSPACE_DIR)
    os.makedirs(WORKSPACE_DIR)
    logger.info(f"Application started. Launching Gradio interface...")
    demo.queue().launch()