Upload 8 files
Browse files- .gitattributes +2 -0
- app.py +672 -0
- cnn_model.h5 +3 -0
- deploy.prototxt +1790 -0
- face_detection_yunet_2023mar.onnx +3 -0
- haarcascade_frontalface_default.xml +0 -0
- requirements.txt +70 -0
- res10_300x300_ssd_iter_140000.caffemodel +3 -0
- sample_videos/Sample.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
res10_300x300_ssd_iter_140000.caffemodel filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
sample_videos/Sample.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import altair as alt
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import cv2
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
import tempfile
|
| 12 |
+
import time
|
| 13 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 14 |
+
from collections import deque
|
| 15 |
+
import tensorflow as tf
|
| 16 |
+
from tensorflow.keras.preprocessing import image
|
| 17 |
+
from tensorflow.keras.models import load_model
|
| 18 |
+
import urllib.request
|
| 19 |
+
import shutil
|
| 20 |
+
|
| 21 |
+
class CNNDeepfakeDetector:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
st.info("Initializing CNN Deepfake Detector... This may take a moment.")
|
| 24 |
+
|
| 25 |
+
# Initialize CNN model for deepfake detection
|
| 26 |
+
with st.spinner("Loading CNN deepfake detection model..."):
|
| 27 |
+
try:
|
| 28 |
+
self.model = load_model('cnn_model.h5')
|
| 29 |
+
st.success("CNN model loaded successfully!")
|
| 30 |
+
except Exception as e:
|
| 31 |
+
st.error(f"Error loading CNN model: {e}")
|
| 32 |
+
st.warning("Please make sure 'cnn_model.h5' is in the current directory.")
|
| 33 |
+
self.model = None
|
| 34 |
+
|
| 35 |
+
def classify_image(self, face_img):
|
| 36 |
+
"""Classify a face image as real or fake using CNN model"""
|
| 37 |
+
try:
|
| 38 |
+
if self.model is None:
|
| 39 |
+
return "Model Not Loaded", 0.0
|
| 40 |
+
|
| 41 |
+
# Resize to target size
|
| 42 |
+
img_resized = cv2.resize(face_img, (128, 128))
|
| 43 |
+
|
| 44 |
+
# Preprocess the image
|
| 45 |
+
img_array = img_resized / 255.0
|
| 46 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 47 |
+
|
| 48 |
+
# Make prediction
|
| 49 |
+
prediction = self.model.predict(img_array)
|
| 50 |
+
confidence = float(prediction[0][0])
|
| 51 |
+
|
| 52 |
+
# In this model, <0.5 means Real, >=0.5 means Fake
|
| 53 |
+
label = 'Real' if confidence < 0.5 else 'Fake'
|
| 54 |
+
|
| 55 |
+
# Adjust confidence to be relative to the prediction
|
| 56 |
+
if label == 'Fake':
|
| 57 |
+
confidence = confidence # Already between 0.5-1.0
|
| 58 |
+
else:
|
| 59 |
+
confidence = 1.0 - confidence # Convert 0.0-0.5 to 0.5-1.0
|
| 60 |
+
|
| 61 |
+
return label, confidence
|
| 62 |
+
|
| 63 |
+
except Exception as e:
|
| 64 |
+
st.error(f"Error in CNN classification: {e}")
|
| 65 |
+
return "Error", 0.0
|
| 66 |
+
|
| 67 |
+
class DeepfakeDetector:
|
| 68 |
+
def __init__(self):
|
| 69 |
+
st.info("Initializing Deepfake Detector... This may take a moment.")
|
| 70 |
+
|
| 71 |
+
# Initialize ViT model for deepfake detection
|
| 72 |
+
with st.spinner("Loading deepfake detection model..."):
|
| 73 |
+
self.image_processor = AutoImageProcessor.from_pretrained(
|
| 74 |
+
'Adieee5/deepfake-detection-f3net-cross')
|
| 75 |
+
self.model = AutoModelForImageClassification.from_pretrained(
|
| 76 |
+
'Adieee5/deepfake-detection-f3net-cross')
|
| 77 |
+
|
| 78 |
+
# Face detection model setup
|
| 79 |
+
with st.spinner("Loading face detection model..."):
|
| 80 |
+
model_file = "deploy.prototxt"
|
| 81 |
+
weights_file = "res10_300x300_ssd_iter_140000.caffemodel"
|
| 82 |
+
|
| 83 |
+
self.use_dnn = False
|
| 84 |
+
if os.path.exists(model_file) and os.path.exists(weights_file):
|
| 85 |
+
try:
|
| 86 |
+
self.face_net = cv2.dnn.readNetFromCaffe(model_file, weights_file)
|
| 87 |
+
self.use_dnn = True
|
| 88 |
+
st.success("Using DNN face detector (better for close-up faces)")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
st.warning(f"Could not load DNN model: {e}")
|
| 91 |
+
self.use_dnn = False
|
| 92 |
+
|
| 93 |
+
if not self.use_dnn:
|
| 94 |
+
# Fallback to Haar cascade
|
| 95 |
+
cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
| 96 |
+
if os.path.exists(cascade_path):
|
| 97 |
+
self.face_cascade = cv2.CascadeClassifier(cascade_path)
|
| 98 |
+
st.warning("Using Haar cascade face detector as fallback")
|
| 99 |
+
else:
|
| 100 |
+
st.error(f"Cascade file not found: {cascade_path}")
|
| 101 |
+
|
| 102 |
+
# Initialize CNN model
|
| 103 |
+
self.cnn_detector = CNNDeepfakeDetector()
|
| 104 |
+
|
| 105 |
+
# Face tracking/smoothing parameters
|
| 106 |
+
self.face_history = {} # Store face tracking data
|
| 107 |
+
self.face_history_max_size = 10 # Store history for last 10 frames
|
| 108 |
+
self.face_ttl = 5 # Number of frames a face can be missing before removing
|
| 109 |
+
self.next_face_id = 0 # For assigning unique IDs to tracked faces
|
| 110 |
+
|
| 111 |
+
# Result smoothing
|
| 112 |
+
self.result_buffer_size = 5 # Number of classifications to average
|
| 113 |
+
|
| 114 |
+
# Performance metrics
|
| 115 |
+
self.processing_times = deque(maxlen=30)
|
| 116 |
+
|
| 117 |
+
st.success("Models loaded successfully!")
|
| 118 |
+
|
| 119 |
+
def detect_faces_haar(self, frame):
|
| 120 |
+
"""Detect faces using Haar cascade"""
|
| 121 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 122 |
+
faces = self.face_cascade.detectMultiScale(
|
| 123 |
+
gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
| 124 |
+
|
| 125 |
+
# Convert to list of (x,y,w,h,confidence) format for consistency
|
| 126 |
+
return [(x, y, w, h, 0.8) for (x, y, w, h) in faces]
|
| 127 |
+
|
| 128 |
+
def classify_frame(self, face_img, model_type="vit"):
|
| 129 |
+
"""Classify a face image as real or fake"""
|
| 130 |
+
try:
|
| 131 |
+
if model_type == "cnn":
|
| 132 |
+
return self.cnn_detector.classify_image(face_img)
|
| 133 |
+
|
| 134 |
+
# Default to ViT model
|
| 135 |
+
# Resize image if too small
|
| 136 |
+
h, w = face_img.shape[:2]
|
| 137 |
+
if h < 224 or w < 224:
|
| 138 |
+
scale = max(224/h, 224/w)
|
| 139 |
+
face_img = cv2.resize(face_img, (int(w*scale), int(h*scale)))
|
| 140 |
+
|
| 141 |
+
# Make sure we have valid image data
|
| 142 |
+
if face_img.size == 0:
|
| 143 |
+
return "Unknown", 0.0
|
| 144 |
+
|
| 145 |
+
# Process with ViT model
|
| 146 |
+
inputs = self.image_processor(images=face_img, return_tensors="pt")
|
| 147 |
+
outputs = self.model(**inputs)
|
| 148 |
+
logits = outputs.logits
|
| 149 |
+
|
| 150 |
+
# Get prediction and confidence
|
| 151 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
| 152 |
+
pred = torch.argmax(logits, dim=1).item()
|
| 153 |
+
|
| 154 |
+
# The model has two classes: 0=Fake, 1=Real
|
| 155 |
+
label = 'Real' if pred == 1 else 'Fake'
|
| 156 |
+
confidence = probs[0][pred].item()
|
| 157 |
+
|
| 158 |
+
return label, confidence
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
st.error(f"Error in classification: {e}")
|
| 162 |
+
return "Error", 0.0
|
| 163 |
+
|
| 164 |
+
def detect_faces_dnn(self, frame):
|
| 165 |
+
"""Detect faces using DNN method"""
|
| 166 |
+
height, width = frame.shape[:2]
|
| 167 |
+
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
|
| 168 |
+
(300, 300), (104.0, 177.0, 123.0))
|
| 169 |
+
self.face_net.setInput(blob)
|
| 170 |
+
detections = self.face_net.forward()
|
| 171 |
+
|
| 172 |
+
faces = []
|
| 173 |
+
for i in range(detections.shape[2]):
|
| 174 |
+
confidence = detections[0, 0, i, 2]
|
| 175 |
+
if confidence > 0.5: # Filter out weak detections
|
| 176 |
+
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
|
| 177 |
+
(x1, y1, x2, y2) = box.astype("int")
|
| 178 |
+
# Ensure box is within frame boundaries
|
| 179 |
+
x1, y1 = max(0, x1), max(0, y1)
|
| 180 |
+
x2, y2 = min(width, x2), min(height, y2)
|
| 181 |
+
w, h = x2 - x1, y2 - y1
|
| 182 |
+
if w > 0 and h > 0: # Valid face area
|
| 183 |
+
faces.append((x1, y1, w, h, confidence))
|
| 184 |
+
|
| 185 |
+
return faces
|
| 186 |
+
|
| 187 |
+
def calculate_iou(self, box1, box2):
|
| 188 |
+
"""Calculate Intersection over Union for two boxes"""
|
| 189 |
+
# Convert boxes from (x, y, w, h) to (x1, y1, x2, y2)
|
| 190 |
+
box1_x1, box1_y1, box1_w, box1_h = box1
|
| 191 |
+
box2_x1, box2_y1, box2_w, box2_h = box2
|
| 192 |
+
|
| 193 |
+
box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h
|
| 194 |
+
box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h
|
| 195 |
+
|
| 196 |
+
# Calculate area of intersection rectangle
|
| 197 |
+
x_left = max(box1_x1, box2_x1)
|
| 198 |
+
y_top = max(box1_y1, box2_y1)
|
| 199 |
+
x_right = min(box1_x2, box2_x2)
|
| 200 |
+
y_bottom = min(box1_y2, box2_y2)
|
| 201 |
+
|
| 202 |
+
if x_right < x_left or y_bottom < y_top:
|
| 203 |
+
return 0.0
|
| 204 |
+
|
| 205 |
+
intersection_area = (x_right - x_left) * (y_bottom - y_top)
|
| 206 |
+
|
| 207 |
+
# Calculate area of both boxes
|
| 208 |
+
box1_area = box1_w * box1_h
|
| 209 |
+
box2_area = box2_w * box2_h
|
| 210 |
+
|
| 211 |
+
# Calculate IoU
|
| 212 |
+
iou = intersection_area / float(box1_area + box2_area - intersection_area)
|
| 213 |
+
return iou
|
| 214 |
+
|
| 215 |
+
def track_faces(self, faces):
|
| 216 |
+
matched_faces = []
|
| 217 |
+
unmatched_detections = list(range(len(faces)))
|
| 218 |
+
|
| 219 |
+
if not self.face_history:
|
| 220 |
+
for face in faces:
|
| 221 |
+
face_id = self.next_face_id
|
| 222 |
+
self.next_face_id += 1
|
| 223 |
+
self.face_history[face_id] = {
|
| 224 |
+
'positions': deque([face[:4]], maxlen=self.face_history_max_size),
|
| 225 |
+
'ttl': self.face_ttl,
|
| 226 |
+
'label': None,
|
| 227 |
+
'confidence': 0.0,
|
| 228 |
+
'result_history': deque(maxlen=self.result_buffer_size)
|
| 229 |
+
}
|
| 230 |
+
matched_faces.append((face_id, face))
|
| 231 |
+
return matched_faces
|
| 232 |
+
|
| 233 |
+
for face_id in list(self.face_history.keys()):
|
| 234 |
+
last_pos = self.face_history[face_id]['positions'][-1]
|
| 235 |
+
best_match = -1
|
| 236 |
+
best_iou = 0.3
|
| 237 |
+
for i in unmatched_detections:
|
| 238 |
+
iou = self.calculate_iou(last_pos, faces[i][:4])
|
| 239 |
+
if iou > best_iou:
|
| 240 |
+
best_iou = iou
|
| 241 |
+
best_match = i
|
| 242 |
+
if best_match != -1:
|
| 243 |
+
matched_face = faces[best_match]
|
| 244 |
+
self.face_history[face_id]['positions'].append(matched_face[:4])
|
| 245 |
+
self.face_history[face_id]['ttl'] = self.face_ttl
|
| 246 |
+
matched_faces.append((face_id, matched_face))
|
| 247 |
+
unmatched_detections.remove(best_match)
|
| 248 |
+
else:
|
| 249 |
+
self.face_history[face_id]['ttl'] -= 1
|
| 250 |
+
if self.face_history[face_id]['ttl'] <= 0:
|
| 251 |
+
del self.face_history[face_id]
|
| 252 |
+
else:
|
| 253 |
+
predicted_face = (*last_pos, 0.5)
|
| 254 |
+
matched_faces.append((face_id, predicted_face))
|
| 255 |
+
|
| 256 |
+
for i in unmatched_detections:
|
| 257 |
+
face_id = self.next_face_id
|
| 258 |
+
self.next_face_id += 1
|
| 259 |
+
self.face_history[face_id] = {
|
| 260 |
+
'positions': deque([faces[i][:4]], maxlen=self.face_history_max_size),
|
| 261 |
+
'ttl': self.face_ttl,
|
| 262 |
+
'label': None,
|
| 263 |
+
'confidence': 0.0,
|
| 264 |
+
'result_history': deque(maxlen=self.result_buffer_size)
|
| 265 |
+
}
|
| 266 |
+
matched_faces.append((face_id, faces[i]))
|
| 267 |
+
|
| 268 |
+
return matched_faces
|
| 269 |
+
|
| 270 |
+
def smooth_face_position(self, face_id):
|
| 271 |
+
"""Calculate smoothed position for a tracked face"""
|
| 272 |
+
positions = self.face_history[face_id]['positions']
|
| 273 |
+
|
| 274 |
+
if len(positions) == 1:
|
| 275 |
+
return positions[0]
|
| 276 |
+
|
| 277 |
+
# Weight recent positions more heavily
|
| 278 |
+
total_weight = 0
|
| 279 |
+
x, y, w, h = 0, 0, 0, 0
|
| 280 |
+
|
| 281 |
+
for i, pos in enumerate(positions):
|
| 282 |
+
# Exponential weighting - newer positions have more influence
|
| 283 |
+
weight = 2 ** i # Positions are stored newest to oldest
|
| 284 |
+
total_weight += weight
|
| 285 |
+
|
| 286 |
+
x += pos[0] * weight
|
| 287 |
+
y += pos[1] * weight
|
| 288 |
+
w += pos[2] * weight
|
| 289 |
+
h += pos[3] * weight
|
| 290 |
+
|
| 291 |
+
# Calculate weighted average
|
| 292 |
+
x = int(x / total_weight)
|
| 293 |
+
y = int(y / total_weight)
|
| 294 |
+
w = int(w / total_weight)
|
| 295 |
+
h = int(h / total_weight)
|
| 296 |
+
|
| 297 |
+
return (x, y, w, h)
|
| 298 |
+
|
| 299 |
+
def update_face_classification(self, face_id, label, confidence):
|
| 300 |
+
"""Update classification history for a face"""
|
| 301 |
+
self.face_history[face_id]['result_history'].append((label, confidence))
|
| 302 |
+
|
| 303 |
+
# Calculate the smoothed result
|
| 304 |
+
if not self.face_history[face_id]['result_history']:
|
| 305 |
+
return label, confidence
|
| 306 |
+
|
| 307 |
+
real_votes = 0
|
| 308 |
+
fake_votes = 0
|
| 309 |
+
total_confidence = 0.0
|
| 310 |
+
|
| 311 |
+
for result_label, result_conf in self.face_history[face_id]['result_history']:
|
| 312 |
+
if result_label == "Real":
|
| 313 |
+
real_votes += 1
|
| 314 |
+
total_confidence += result_conf
|
| 315 |
+
elif result_label == "Fake":
|
| 316 |
+
fake_votes += 1
|
| 317 |
+
total_confidence += result_conf
|
| 318 |
+
|
| 319 |
+
# Determine majority vote
|
| 320 |
+
if real_votes >= fake_votes:
|
| 321 |
+
smoothed_label = "Real"
|
| 322 |
+
label_confidence = real_votes / len(self.face_history[face_id]['result_history'])
|
| 323 |
+
else:
|
| 324 |
+
smoothed_label = "Fake"
|
| 325 |
+
label_confidence = fake_votes / len(self.face_history[face_id]['result_history'])
|
| 326 |
+
|
| 327 |
+
# Average confidence weighted by vote consistency
|
| 328 |
+
avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence
|
| 329 |
+
|
| 330 |
+
# Store the smoothed result
|
| 331 |
+
self.face_history[face_id]['label'] = smoothed_label
|
| 332 |
+
self.face_history[face_id]['confidence'] = avg_confidence
|
| 333 |
+
|
| 334 |
+
return smoothed_label, avg_confidence
|
| 335 |
+
|
| 336 |
+
def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"):
|
| 337 |
+
"""Process video with Streamlit output"""
|
| 338 |
+
use_dnn_current = detector_type == "dnn" and self.use_dnn
|
| 339 |
+
|
| 340 |
+
cap = cv2.VideoCapture(video_path)
|
| 341 |
+
if not cap.isOpened():
|
| 342 |
+
st.error(f"Error: Cannot open video source")
|
| 343 |
+
return
|
| 344 |
+
|
| 345 |
+
# Get video properties
|
| 346 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 347 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 348 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 349 |
+
total_frames = 250 if video_path != 0 else 0
|
| 350 |
+
|
| 351 |
+
# Display video info
|
| 352 |
+
if video_path != 0: # If not webcam
|
| 353 |
+
status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames")
|
| 354 |
+
else:
|
| 355 |
+
status_text.text(f"Webcam: {frame_width}x{frame_height}")
|
| 356 |
+
|
| 357 |
+
# Reset tracking data for new video
|
| 358 |
+
self.face_history = {}
|
| 359 |
+
self.next_face_id = 0
|
| 360 |
+
self.processing_times = deque(maxlen=30)
|
| 361 |
+
|
| 362 |
+
frame_count = 0
|
| 363 |
+
process_every_n_frames = 2 # Process every 2nd frame for better performance
|
| 364 |
+
|
| 365 |
+
# For face detection stats
|
| 366 |
+
face_stats = {"Real": 0, "Fake": 0, "Unknown": 0}
|
| 367 |
+
|
| 368 |
+
# Main processing loop
|
| 369 |
+
while True:
|
| 370 |
+
start_time = time.time()
|
| 371 |
+
|
| 372 |
+
ret, frame = cap.read()
|
| 373 |
+
if not ret:
|
| 374 |
+
status_text.text("End of video reached")
|
| 375 |
+
break
|
| 376 |
+
|
| 377 |
+
frame_count += 1
|
| 378 |
+
|
| 379 |
+
if frame_count == 250:
|
| 380 |
+
st.success("Video Processed Successfully!")
|
| 381 |
+
break
|
| 382 |
+
|
| 383 |
+
if video_path != 0: # If not webcam, update progress
|
| 384 |
+
progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0)
|
| 385 |
+
progress_bar.progress(progress)
|
| 386 |
+
|
| 387 |
+
process_frame = (frame_count % process_every_n_frames == 0)
|
| 388 |
+
|
| 389 |
+
# Store original frame for face extraction
|
| 390 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 391 |
+
|
| 392 |
+
if process_frame:
|
| 393 |
+
# Detect faces using the appropriate method
|
| 394 |
+
if use_dnn_current:
|
| 395 |
+
faces = self.detect_faces_dnn(frame)
|
| 396 |
+
else:
|
| 397 |
+
faces = self.detect_faces_haar(frame)
|
| 398 |
+
|
| 399 |
+
# Track faces across frames
|
| 400 |
+
tracked_faces = self.track_faces(faces)
|
| 401 |
+
|
| 402 |
+
# Process each tracked face
|
| 403 |
+
for face_id, (x, y, w, h, face_confidence) in tracked_faces:
|
| 404 |
+
if face_id not in self.face_history:
|
| 405 |
+
continue
|
| 406 |
+
|
| 407 |
+
sx, sy, sw, sh = self.smooth_face_position(face_id)
|
| 408 |
+
# Draw rectangle around face with smoothed coordinates
|
| 409 |
+
cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2)
|
| 410 |
+
|
| 411 |
+
# Only process classification for real detections (not predicted)
|
| 412 |
+
if w > 20 and h > 20 and face_id in self.face_history:
|
| 413 |
+
try:
|
| 414 |
+
# Extract face using smoothed coordinates for better consistency
|
| 415 |
+
face = frame_rgb[sy:sy+sh, sx:sx+sw]
|
| 416 |
+
|
| 417 |
+
# Skip processing if face is too small after smoothing
|
| 418 |
+
if face.size == 0 or face.shape[0] < 20 or face.shape[1] < 20:
|
| 419 |
+
continue
|
| 420 |
+
|
| 421 |
+
# Process only every N frames or if this is a new face
|
| 422 |
+
if frame_count % process_every_n_frames == 0 or \
|
| 423 |
+
len(self.face_history[face_id]['result_history']) == 0:
|
| 424 |
+
# Classify the face using the selected model
|
| 425 |
+
label, confidence = self.classify_frame(face, model_type)
|
| 426 |
+
|
| 427 |
+
# Update and smooth results
|
| 428 |
+
label, confidence = self.update_face_classification(face_id, label, confidence)
|
| 429 |
+
else:
|
| 430 |
+
# Use last stored result
|
| 431 |
+
label = self.face_history[face_id]['label'] or "Unknown"
|
| 432 |
+
confidence = self.face_history[face_id]['confidence']
|
| 433 |
+
|
| 434 |
+
# Update stats
|
| 435 |
+
if label in face_stats:
|
| 436 |
+
face_stats[label] += 1
|
| 437 |
+
|
| 438 |
+
# Display results
|
| 439 |
+
result_text = f"{label}: {confidence:.2f}"
|
| 440 |
+
text_color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
| 441 |
+
|
| 442 |
+
# Add text background for better visibility
|
| 443 |
+
cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1)
|
| 444 |
+
cv2.putText(frame, result_text, (sx, sy+sh+20),
|
| 445 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
|
| 446 |
+
|
| 447 |
+
# Draw face ID
|
| 448 |
+
cv2.putText(frame, f"ID:{face_id}", (sx, sy-5),
|
| 449 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
|
| 450 |
+
except Exception as e:
|
| 451 |
+
st.error(f"Error processing face: {e}")
|
| 452 |
+
|
| 453 |
+
# Measure processing time
|
| 454 |
+
process_time = time.time() - start_time
|
| 455 |
+
self.processing_times.append(process_time)
|
| 456 |
+
avg_time = sum(self.processing_times) / len(self.processing_times)
|
| 457 |
+
effective_fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 458 |
+
|
| 459 |
+
# Add frame counter and progress
|
| 460 |
+
if video_path != 0: # If not webcam
|
| 461 |
+
progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0
|
| 462 |
+
cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)",
|
| 463 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 464 |
+
else:
|
| 465 |
+
cv2.putText(frame, f"Frame: {frame_count}",
|
| 466 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 467 |
+
|
| 468 |
+
# Show detector info and performance
|
| 469 |
+
detector_name = "DNN" if use_dnn_current else "Haar Cascade"
|
| 470 |
+
model_name = "ViT" if model_type == "vit" else "CNN"
|
| 471 |
+
cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}",
|
| 472 |
+
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 473 |
+
|
| 474 |
+
# Show tracking info
|
| 475 |
+
cv2.putText(frame, f"Tracked faces: {len(self.face_history)}",
|
| 476 |
+
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 477 |
+
|
| 478 |
+
# Display the frame in Streamlit
|
| 479 |
+
stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB")
|
| 480 |
+
|
| 481 |
+
# Update stats
|
| 482 |
+
status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}")
|
| 483 |
+
|
| 484 |
+
# Check if stop button is pressed
|
| 485 |
+
if st.session_state.get('stop_button', False):
|
| 486 |
+
break
|
| 487 |
+
|
| 488 |
+
# Clean up
|
| 489 |
+
cap.release()
|
| 490 |
+
return face_stats
|
| 491 |
+
|
| 492 |
+
# Function to ensure sample video exists
|
| 493 |
+
def ensure_sample_video():
|
| 494 |
+
sample_dir = "sample_videos"
|
| 495 |
+
sample_path = os.path.join(sample_dir, "Sample.mp4")
|
| 496 |
+
|
| 497 |
+
# Create directory if it doesn't exist
|
| 498 |
+
if not os.path.exists(sample_dir):
|
| 499 |
+
os.makedirs(sample_dir)
|
| 500 |
+
|
| 501 |
+
# If sample video doesn't exist, download it
|
| 502 |
+
if not os.path.exists(sample_path):
|
| 503 |
+
try:
|
| 504 |
+
with st.spinner("Downloading sample video..."):
|
| 505 |
+
# URL to a public domain sample video that contains faces
|
| 506 |
+
sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4"
|
| 507 |
+
|
| 508 |
+
# Download the file
|
| 509 |
+
with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file:
|
| 510 |
+
shutil.copyfileobj(response, out_file)
|
| 511 |
+
|
| 512 |
+
st.success("Sample video downloaded successfully!")
|
| 513 |
+
except Exception as e:
|
| 514 |
+
st.error(f"Failed to download sample video: {e}")
|
| 515 |
+
return None
|
| 516 |
+
|
| 517 |
+
return sample_path
|
| 518 |
+
|
| 519 |
+
def main():
|
| 520 |
+
st.set_page_config(page_title="Deepfake Detector", layout="wide")
|
| 521 |
+
|
| 522 |
+
# App title and description
|
| 523 |
+
st.title("Deepfake Detection App")
|
| 524 |
+
st.markdown("""
|
| 525 |
+
This app uses computer vision and deep learning to detect deepfake videos.
|
| 526 |
+
Upload a video or use your webcam to detect if faces are real or manipulated.
|
| 527 |
+
""")
|
| 528 |
+
|
| 529 |
+
# Initialize session state for the detector and variables
|
| 530 |
+
if 'detector' not in st.session_state:
|
| 531 |
+
st.session_state.detector = None
|
| 532 |
+
|
| 533 |
+
if 'stop_button' not in st.session_state:
|
| 534 |
+
st.session_state.stop_button = False
|
| 535 |
+
|
| 536 |
+
if 'use_sample' not in st.session_state:
|
| 537 |
+
st.session_state.use_sample = False
|
| 538 |
+
|
| 539 |
+
if 'sample_path' not in st.session_state:
|
| 540 |
+
st.session_state.sample_path = None
|
| 541 |
+
|
| 542 |
+
# Initialize the detector
|
| 543 |
+
if st.session_state.detector is None:
|
| 544 |
+
st.session_state.detector = DeepfakeDetector()
|
| 545 |
+
|
| 546 |
+
# Create sidebar for options
|
| 547 |
+
st.sidebar.title("Options")
|
| 548 |
+
|
| 549 |
+
input_option = st.sidebar.radio(
|
| 550 |
+
"Select Input Source",
|
| 551 |
+
["Upload Video", "Use Webcam", "Try Sample Video"]
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
detector_type = st.sidebar.selectbox(
|
| 555 |
+
"Face Detector",
|
| 556 |
+
["DNN (better for close-ups)", "Haar Cascade (faster)"],
|
| 557 |
+
index=0 if st.session_state.detector.use_dnn else 1
|
| 558 |
+
)
|
| 559 |
+
detector_option = "dnn" if "DNN" in detector_type else "haar"
|
| 560 |
+
|
| 561 |
+
# Model selection option
|
| 562 |
+
model_type = st.sidebar.selectbox(
|
| 563 |
+
"Deepfake Detection Model",
|
| 564 |
+
["Vision Transformer (ViT)", "F3 Net Model"],
|
| 565 |
+
index=0
|
| 566 |
+
)
|
| 567 |
+
model_option = "vit" if "Vision" in model_type else "cnn"
|
| 568 |
+
|
| 569 |
+
# Main content area
|
| 570 |
+
col1, col2 = st.columns([3, 1])
|
| 571 |
+
|
| 572 |
+
with col1:
|
| 573 |
+
# Video display area
|
| 574 |
+
video_placeholder = st.empty()
|
| 575 |
+
|
| 576 |
+
with col2:
|
| 577 |
+
# Status and controls
|
| 578 |
+
status_text = st.empty()
|
| 579 |
+
progress_bar = st.empty()
|
| 580 |
+
|
| 581 |
+
# Results section
|
| 582 |
+
st.subheader("Results")
|
| 583 |
+
results_area = st.empty()
|
| 584 |
+
|
| 585 |
+
# Stop button
|
| 586 |
+
if st.button("Stop Processing"):
|
| 587 |
+
st.session_state.stop_button = True
|
| 588 |
+
|
| 589 |
+
# Process based on selected option
|
| 590 |
+
if input_option == "Upload Video":
|
| 591 |
+
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"])
|
| 592 |
+
|
| 593 |
+
if uploaded_file is not None:
|
| 594 |
+
st.session_state.stop_button = False
|
| 595 |
+
|
| 596 |
+
# Save uploaded file to temp file
|
| 597 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 598 |
+
tfile.write(uploaded_file.read())
|
| 599 |
+
video_path = tfile.name
|
| 600 |
+
|
| 601 |
+
# Process the video
|
| 602 |
+
face_stats = st.session_state.detector.process_video(
|
| 603 |
+
video_path,
|
| 604 |
+
video_placeholder,
|
| 605 |
+
status_text,
|
| 606 |
+
progress_bar,
|
| 607 |
+
detector_option,
|
| 608 |
+
model_option
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
# Display results
|
| 612 |
+
results_df = {
|
| 613 |
+
"Category": ["Real Faces", "Fake Faces"],
|
| 614 |
+
"Count": [face_stats["Real"], face_stats["Fake"]]
|
| 615 |
+
}
|
| 616 |
+
results_area.dataframe(results_df)
|
| 617 |
+
|
| 618 |
+
# Clean up temp file
|
| 619 |
+
os.unlink(video_path)
|
| 620 |
+
|
| 621 |
+
elif input_option == "Use Webcam":
|
| 622 |
+
# Reset stop button
|
| 623 |
+
st.session_state.stop_button = False
|
| 624 |
+
|
| 625 |
+
if st.sidebar.button("Start Webcam"):
|
| 626 |
+
# Process webcam feed
|
| 627 |
+
face_stats = st.session_state.detector.process_video(
|
| 628 |
+
0, # 0 is the default camera
|
| 629 |
+
video_placeholder,
|
| 630 |
+
status_text,
|
| 631 |
+
progress_bar,
|
| 632 |
+
detector_option,
|
| 633 |
+
model_option
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
# Display results after stopping
|
| 637 |
+
results_df = {
|
| 638 |
+
"Category": ["Real Faces", "Fake Faces"],
|
| 639 |
+
"Count": [face_stats["Real"], face_stats["Fake"]]
|
| 640 |
+
}
|
| 641 |
+
results_area.dataframe(results_df)
|
| 642 |
+
|
| 643 |
+
elif input_option == "Try Sample Video":
|
| 644 |
+
# Reset stop button
|
| 645 |
+
st.session_state.stop_button = False
|
| 646 |
+
|
| 647 |
+
# Get or download the sample video
|
| 648 |
+
sample_path = ensure_sample_video()
|
| 649 |
+
|
| 650 |
+
if sample_path:
|
| 651 |
+
if st.sidebar.button("Process Sample Video"):
|
| 652 |
+
# Process the sample video
|
| 653 |
+
face_stats = st.session_state.detector.process_video(
|
| 654 |
+
sample_path,
|
| 655 |
+
video_placeholder,
|
| 656 |
+
status_text,
|
| 657 |
+
progress_bar,
|
| 658 |
+
detector_option,
|
| 659 |
+
model_option
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
# Display results
|
| 663 |
+
results_df = {
|
| 664 |
+
"Category": ["Real Faces", "Fake Faces"],
|
| 665 |
+
"Count": [face_stats["Real"], face_stats["Fake"]]
|
| 666 |
+
}
|
| 667 |
+
results_area.dataframe(results_df)
|
| 668 |
+
else:
|
| 669 |
+
st.sidebar.error("Failed to load sample video. Please try uploading your own video instead.")
|
| 670 |
+
|
| 671 |
+
if __name__ == "__main__":
|
| 672 |
+
main()
|
cnn_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f54d9db020da33f99f861d41dc1334ec33adc14991ada4033a4ece790d0904e
|
| 3 |
+
size 312843624
|
deploy.prototxt
ADDED
|
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
input: "data"
|
| 2 |
+
input_shape {
|
| 3 |
+
dim: 1
|
| 4 |
+
dim: 3
|
| 5 |
+
dim: 300
|
| 6 |
+
dim: 300
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
+
layer {
|
| 10 |
+
name: "data_bn"
|
| 11 |
+
type: "BatchNorm"
|
| 12 |
+
bottom: "data"
|
| 13 |
+
top: "data_bn"
|
| 14 |
+
param {
|
| 15 |
+
lr_mult: 0.0
|
| 16 |
+
}
|
| 17 |
+
param {
|
| 18 |
+
lr_mult: 0.0
|
| 19 |
+
}
|
| 20 |
+
param {
|
| 21 |
+
lr_mult: 0.0
|
| 22 |
+
}
|
| 23 |
+
}
|
| 24 |
+
layer {
|
| 25 |
+
name: "data_scale"
|
| 26 |
+
type: "Scale"
|
| 27 |
+
bottom: "data_bn"
|
| 28 |
+
top: "data_bn"
|
| 29 |
+
param {
|
| 30 |
+
lr_mult: 1.0
|
| 31 |
+
decay_mult: 1.0
|
| 32 |
+
}
|
| 33 |
+
param {
|
| 34 |
+
lr_mult: 2.0
|
| 35 |
+
decay_mult: 1.0
|
| 36 |
+
}
|
| 37 |
+
scale_param {
|
| 38 |
+
bias_term: true
|
| 39 |
+
}
|
| 40 |
+
}
|
| 41 |
+
layer {
|
| 42 |
+
name: "conv1_h"
|
| 43 |
+
type: "Convolution"
|
| 44 |
+
bottom: "data_bn"
|
| 45 |
+
top: "conv1_h"
|
| 46 |
+
param {
|
| 47 |
+
lr_mult: 1.0
|
| 48 |
+
decay_mult: 1.0
|
| 49 |
+
}
|
| 50 |
+
param {
|
| 51 |
+
lr_mult: 2.0
|
| 52 |
+
decay_mult: 1.0
|
| 53 |
+
}
|
| 54 |
+
convolution_param {
|
| 55 |
+
num_output: 32
|
| 56 |
+
pad: 3
|
| 57 |
+
kernel_size: 7
|
| 58 |
+
stride: 2
|
| 59 |
+
weight_filler {
|
| 60 |
+
type: "msra"
|
| 61 |
+
variance_norm: FAN_OUT
|
| 62 |
+
}
|
| 63 |
+
bias_filler {
|
| 64 |
+
type: "constant"
|
| 65 |
+
value: 0.0
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
}
|
| 69 |
+
layer {
|
| 70 |
+
name: "conv1_bn_h"
|
| 71 |
+
type: "BatchNorm"
|
| 72 |
+
bottom: "conv1_h"
|
| 73 |
+
top: "conv1_h"
|
| 74 |
+
param {
|
| 75 |
+
lr_mult: 0.0
|
| 76 |
+
}
|
| 77 |
+
param {
|
| 78 |
+
lr_mult: 0.0
|
| 79 |
+
}
|
| 80 |
+
param {
|
| 81 |
+
lr_mult: 0.0
|
| 82 |
+
}
|
| 83 |
+
}
|
| 84 |
+
layer {
|
| 85 |
+
name: "conv1_scale_h"
|
| 86 |
+
type: "Scale"
|
| 87 |
+
bottom: "conv1_h"
|
| 88 |
+
top: "conv1_h"
|
| 89 |
+
param {
|
| 90 |
+
lr_mult: 1.0
|
| 91 |
+
decay_mult: 1.0
|
| 92 |
+
}
|
| 93 |
+
param {
|
| 94 |
+
lr_mult: 2.0
|
| 95 |
+
decay_mult: 1.0
|
| 96 |
+
}
|
| 97 |
+
scale_param {
|
| 98 |
+
bias_term: true
|
| 99 |
+
}
|
| 100 |
+
}
|
| 101 |
+
layer {
|
| 102 |
+
name: "conv1_relu"
|
| 103 |
+
type: "ReLU"
|
| 104 |
+
bottom: "conv1_h"
|
| 105 |
+
top: "conv1_h"
|
| 106 |
+
}
|
| 107 |
+
layer {
|
| 108 |
+
name: "conv1_pool"
|
| 109 |
+
type: "Pooling"
|
| 110 |
+
bottom: "conv1_h"
|
| 111 |
+
top: "conv1_pool"
|
| 112 |
+
pooling_param {
|
| 113 |
+
kernel_size: 3
|
| 114 |
+
stride: 2
|
| 115 |
+
}
|
| 116 |
+
}
|
| 117 |
+
layer {
|
| 118 |
+
name: "layer_64_1_conv1_h"
|
| 119 |
+
type: "Convolution"
|
| 120 |
+
bottom: "conv1_pool"
|
| 121 |
+
top: "layer_64_1_conv1_h"
|
| 122 |
+
param {
|
| 123 |
+
lr_mult: 1.0
|
| 124 |
+
decay_mult: 1.0
|
| 125 |
+
}
|
| 126 |
+
convolution_param {
|
| 127 |
+
num_output: 32
|
| 128 |
+
bias_term: false
|
| 129 |
+
pad: 1
|
| 130 |
+
kernel_size: 3
|
| 131 |
+
stride: 1
|
| 132 |
+
weight_filler {
|
| 133 |
+
type: "msra"
|
| 134 |
+
}
|
| 135 |
+
bias_filler {
|
| 136 |
+
type: "constant"
|
| 137 |
+
value: 0.0
|
| 138 |
+
}
|
| 139 |
+
}
|
| 140 |
+
}
|
| 141 |
+
layer {
|
| 142 |
+
name: "layer_64_1_bn2_h"
|
| 143 |
+
type: "BatchNorm"
|
| 144 |
+
bottom: "layer_64_1_conv1_h"
|
| 145 |
+
top: "layer_64_1_conv1_h"
|
| 146 |
+
param {
|
| 147 |
+
lr_mult: 0.0
|
| 148 |
+
}
|
| 149 |
+
param {
|
| 150 |
+
lr_mult: 0.0
|
| 151 |
+
}
|
| 152 |
+
param {
|
| 153 |
+
lr_mult: 0.0
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
layer {
|
| 157 |
+
name: "layer_64_1_scale2_h"
|
| 158 |
+
type: "Scale"
|
| 159 |
+
bottom: "layer_64_1_conv1_h"
|
| 160 |
+
top: "layer_64_1_conv1_h"
|
| 161 |
+
param {
|
| 162 |
+
lr_mult: 1.0
|
| 163 |
+
decay_mult: 1.0
|
| 164 |
+
}
|
| 165 |
+
param {
|
| 166 |
+
lr_mult: 2.0
|
| 167 |
+
decay_mult: 1.0
|
| 168 |
+
}
|
| 169 |
+
scale_param {
|
| 170 |
+
bias_term: true
|
| 171 |
+
}
|
| 172 |
+
}
|
| 173 |
+
layer {
|
| 174 |
+
name: "layer_64_1_relu2"
|
| 175 |
+
type: "ReLU"
|
| 176 |
+
bottom: "layer_64_1_conv1_h"
|
| 177 |
+
top: "layer_64_1_conv1_h"
|
| 178 |
+
}
|
| 179 |
+
layer {
|
| 180 |
+
name: "layer_64_1_conv2_h"
|
| 181 |
+
type: "Convolution"
|
| 182 |
+
bottom: "layer_64_1_conv1_h"
|
| 183 |
+
top: "layer_64_1_conv2_h"
|
| 184 |
+
param {
|
| 185 |
+
lr_mult: 1.0
|
| 186 |
+
decay_mult: 1.0
|
| 187 |
+
}
|
| 188 |
+
convolution_param {
|
| 189 |
+
num_output: 32
|
| 190 |
+
bias_term: false
|
| 191 |
+
pad: 1
|
| 192 |
+
kernel_size: 3
|
| 193 |
+
stride: 1
|
| 194 |
+
weight_filler {
|
| 195 |
+
type: "msra"
|
| 196 |
+
}
|
| 197 |
+
bias_filler {
|
| 198 |
+
type: "constant"
|
| 199 |
+
value: 0.0
|
| 200 |
+
}
|
| 201 |
+
}
|
| 202 |
+
}
|
| 203 |
+
layer {
|
| 204 |
+
name: "layer_64_1_sum"
|
| 205 |
+
type: "Eltwise"
|
| 206 |
+
bottom: "layer_64_1_conv2_h"
|
| 207 |
+
bottom: "conv1_pool"
|
| 208 |
+
top: "layer_64_1_sum"
|
| 209 |
+
}
|
| 210 |
+
layer {
|
| 211 |
+
name: "layer_128_1_bn1_h"
|
| 212 |
+
type: "BatchNorm"
|
| 213 |
+
bottom: "layer_64_1_sum"
|
| 214 |
+
top: "layer_128_1_bn1_h"
|
| 215 |
+
param {
|
| 216 |
+
lr_mult: 0.0
|
| 217 |
+
}
|
| 218 |
+
param {
|
| 219 |
+
lr_mult: 0.0
|
| 220 |
+
}
|
| 221 |
+
param {
|
| 222 |
+
lr_mult: 0.0
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
layer {
|
| 226 |
+
name: "layer_128_1_scale1_h"
|
| 227 |
+
type: "Scale"
|
| 228 |
+
bottom: "layer_128_1_bn1_h"
|
| 229 |
+
top: "layer_128_1_bn1_h"
|
| 230 |
+
param {
|
| 231 |
+
lr_mult: 1.0
|
| 232 |
+
decay_mult: 1.0
|
| 233 |
+
}
|
| 234 |
+
param {
|
| 235 |
+
lr_mult: 2.0
|
| 236 |
+
decay_mult: 1.0
|
| 237 |
+
}
|
| 238 |
+
scale_param {
|
| 239 |
+
bias_term: true
|
| 240 |
+
}
|
| 241 |
+
}
|
| 242 |
+
layer {
|
| 243 |
+
name: "layer_128_1_relu1"
|
| 244 |
+
type: "ReLU"
|
| 245 |
+
bottom: "layer_128_1_bn1_h"
|
| 246 |
+
top: "layer_128_1_bn1_h"
|
| 247 |
+
}
|
| 248 |
+
layer {
|
| 249 |
+
name: "layer_128_1_conv1_h"
|
| 250 |
+
type: "Convolution"
|
| 251 |
+
bottom: "layer_128_1_bn1_h"
|
| 252 |
+
top: "layer_128_1_conv1_h"
|
| 253 |
+
param {
|
| 254 |
+
lr_mult: 1.0
|
| 255 |
+
decay_mult: 1.0
|
| 256 |
+
}
|
| 257 |
+
convolution_param {
|
| 258 |
+
num_output: 128
|
| 259 |
+
bias_term: false
|
| 260 |
+
pad: 1
|
| 261 |
+
kernel_size: 3
|
| 262 |
+
stride: 2
|
| 263 |
+
weight_filler {
|
| 264 |
+
type: "msra"
|
| 265 |
+
}
|
| 266 |
+
bias_filler {
|
| 267 |
+
type: "constant"
|
| 268 |
+
value: 0.0
|
| 269 |
+
}
|
| 270 |
+
}
|
| 271 |
+
}
|
| 272 |
+
layer {
|
| 273 |
+
name: "layer_128_1_bn2"
|
| 274 |
+
type: "BatchNorm"
|
| 275 |
+
bottom: "layer_128_1_conv1_h"
|
| 276 |
+
top: "layer_128_1_conv1_h"
|
| 277 |
+
param {
|
| 278 |
+
lr_mult: 0.0
|
| 279 |
+
}
|
| 280 |
+
param {
|
| 281 |
+
lr_mult: 0.0
|
| 282 |
+
}
|
| 283 |
+
param {
|
| 284 |
+
lr_mult: 0.0
|
| 285 |
+
}
|
| 286 |
+
}
|
| 287 |
+
layer {
|
| 288 |
+
name: "layer_128_1_scale2"
|
| 289 |
+
type: "Scale"
|
| 290 |
+
bottom: "layer_128_1_conv1_h"
|
| 291 |
+
top: "layer_128_1_conv1_h"
|
| 292 |
+
param {
|
| 293 |
+
lr_mult: 1.0
|
| 294 |
+
decay_mult: 1.0
|
| 295 |
+
}
|
| 296 |
+
param {
|
| 297 |
+
lr_mult: 2.0
|
| 298 |
+
decay_mult: 1.0
|
| 299 |
+
}
|
| 300 |
+
scale_param {
|
| 301 |
+
bias_term: true
|
| 302 |
+
}
|
| 303 |
+
}
|
| 304 |
+
layer {
|
| 305 |
+
name: "layer_128_1_relu2"
|
| 306 |
+
type: "ReLU"
|
| 307 |
+
bottom: "layer_128_1_conv1_h"
|
| 308 |
+
top: "layer_128_1_conv1_h"
|
| 309 |
+
}
|
| 310 |
+
layer {
|
| 311 |
+
name: "layer_128_1_conv2"
|
| 312 |
+
type: "Convolution"
|
| 313 |
+
bottom: "layer_128_1_conv1_h"
|
| 314 |
+
top: "layer_128_1_conv2"
|
| 315 |
+
param {
|
| 316 |
+
lr_mult: 1.0
|
| 317 |
+
decay_mult: 1.0
|
| 318 |
+
}
|
| 319 |
+
convolution_param {
|
| 320 |
+
num_output: 128
|
| 321 |
+
bias_term: false
|
| 322 |
+
pad: 1
|
| 323 |
+
kernel_size: 3
|
| 324 |
+
stride: 1
|
| 325 |
+
weight_filler {
|
| 326 |
+
type: "msra"
|
| 327 |
+
}
|
| 328 |
+
bias_filler {
|
| 329 |
+
type: "constant"
|
| 330 |
+
value: 0.0
|
| 331 |
+
}
|
| 332 |
+
}
|
| 333 |
+
}
|
| 334 |
+
layer {
|
| 335 |
+
name: "layer_128_1_conv_expand_h"
|
| 336 |
+
type: "Convolution"
|
| 337 |
+
bottom: "layer_128_1_bn1_h"
|
| 338 |
+
top: "layer_128_1_conv_expand_h"
|
| 339 |
+
param {
|
| 340 |
+
lr_mult: 1.0
|
| 341 |
+
decay_mult: 1.0
|
| 342 |
+
}
|
| 343 |
+
convolution_param {
|
| 344 |
+
num_output: 128
|
| 345 |
+
bias_term: false
|
| 346 |
+
pad: 0
|
| 347 |
+
kernel_size: 1
|
| 348 |
+
stride: 2
|
| 349 |
+
weight_filler {
|
| 350 |
+
type: "msra"
|
| 351 |
+
}
|
| 352 |
+
bias_filler {
|
| 353 |
+
type: "constant"
|
| 354 |
+
value: 0.0
|
| 355 |
+
}
|
| 356 |
+
}
|
| 357 |
+
}
|
| 358 |
+
layer {
|
| 359 |
+
name: "layer_128_1_sum"
|
| 360 |
+
type: "Eltwise"
|
| 361 |
+
bottom: "layer_128_1_conv2"
|
| 362 |
+
bottom: "layer_128_1_conv_expand_h"
|
| 363 |
+
top: "layer_128_1_sum"
|
| 364 |
+
}
|
| 365 |
+
layer {
|
| 366 |
+
name: "layer_256_1_bn1"
|
| 367 |
+
type: "BatchNorm"
|
| 368 |
+
bottom: "layer_128_1_sum"
|
| 369 |
+
top: "layer_256_1_bn1"
|
| 370 |
+
param {
|
| 371 |
+
lr_mult: 0.0
|
| 372 |
+
}
|
| 373 |
+
param {
|
| 374 |
+
lr_mult: 0.0
|
| 375 |
+
}
|
| 376 |
+
param {
|
| 377 |
+
lr_mult: 0.0
|
| 378 |
+
}
|
| 379 |
+
}
|
| 380 |
+
layer {
|
| 381 |
+
name: "layer_256_1_scale1"
|
| 382 |
+
type: "Scale"
|
| 383 |
+
bottom: "layer_256_1_bn1"
|
| 384 |
+
top: "layer_256_1_bn1"
|
| 385 |
+
param {
|
| 386 |
+
lr_mult: 1.0
|
| 387 |
+
decay_mult: 1.0
|
| 388 |
+
}
|
| 389 |
+
param {
|
| 390 |
+
lr_mult: 2.0
|
| 391 |
+
decay_mult: 1.0
|
| 392 |
+
}
|
| 393 |
+
scale_param {
|
| 394 |
+
bias_term: true
|
| 395 |
+
}
|
| 396 |
+
}
|
| 397 |
+
layer {
|
| 398 |
+
name: "layer_256_1_relu1"
|
| 399 |
+
type: "ReLU"
|
| 400 |
+
bottom: "layer_256_1_bn1"
|
| 401 |
+
top: "layer_256_1_bn1"
|
| 402 |
+
}
|
| 403 |
+
layer {
|
| 404 |
+
name: "layer_256_1_conv1"
|
| 405 |
+
type: "Convolution"
|
| 406 |
+
bottom: "layer_256_1_bn1"
|
| 407 |
+
top: "layer_256_1_conv1"
|
| 408 |
+
param {
|
| 409 |
+
lr_mult: 1.0
|
| 410 |
+
decay_mult: 1.0
|
| 411 |
+
}
|
| 412 |
+
convolution_param {
|
| 413 |
+
num_output: 256
|
| 414 |
+
bias_term: false
|
| 415 |
+
pad: 1
|
| 416 |
+
kernel_size: 3
|
| 417 |
+
stride: 2
|
| 418 |
+
weight_filler {
|
| 419 |
+
type: "msra"
|
| 420 |
+
}
|
| 421 |
+
bias_filler {
|
| 422 |
+
type: "constant"
|
| 423 |
+
value: 0.0
|
| 424 |
+
}
|
| 425 |
+
}
|
| 426 |
+
}
|
| 427 |
+
layer {
|
| 428 |
+
name: "layer_256_1_bn2"
|
| 429 |
+
type: "BatchNorm"
|
| 430 |
+
bottom: "layer_256_1_conv1"
|
| 431 |
+
top: "layer_256_1_conv1"
|
| 432 |
+
param {
|
| 433 |
+
lr_mult: 0.0
|
| 434 |
+
}
|
| 435 |
+
param {
|
| 436 |
+
lr_mult: 0.0
|
| 437 |
+
}
|
| 438 |
+
param {
|
| 439 |
+
lr_mult: 0.0
|
| 440 |
+
}
|
| 441 |
+
}
|
| 442 |
+
layer {
|
| 443 |
+
name: "layer_256_1_scale2"
|
| 444 |
+
type: "Scale"
|
| 445 |
+
bottom: "layer_256_1_conv1"
|
| 446 |
+
top: "layer_256_1_conv1"
|
| 447 |
+
param {
|
| 448 |
+
lr_mult: 1.0
|
| 449 |
+
decay_mult: 1.0
|
| 450 |
+
}
|
| 451 |
+
param {
|
| 452 |
+
lr_mult: 2.0
|
| 453 |
+
decay_mult: 1.0
|
| 454 |
+
}
|
| 455 |
+
scale_param {
|
| 456 |
+
bias_term: true
|
| 457 |
+
}
|
| 458 |
+
}
|
| 459 |
+
layer {
|
| 460 |
+
name: "layer_256_1_relu2"
|
| 461 |
+
type: "ReLU"
|
| 462 |
+
bottom: "layer_256_1_conv1"
|
| 463 |
+
top: "layer_256_1_conv1"
|
| 464 |
+
}
|
| 465 |
+
layer {
|
| 466 |
+
name: "layer_256_1_conv2"
|
| 467 |
+
type: "Convolution"
|
| 468 |
+
bottom: "layer_256_1_conv1"
|
| 469 |
+
top: "layer_256_1_conv2"
|
| 470 |
+
param {
|
| 471 |
+
lr_mult: 1.0
|
| 472 |
+
decay_mult: 1.0
|
| 473 |
+
}
|
| 474 |
+
convolution_param {
|
| 475 |
+
num_output: 256
|
| 476 |
+
bias_term: false
|
| 477 |
+
pad: 1
|
| 478 |
+
kernel_size: 3
|
| 479 |
+
stride: 1
|
| 480 |
+
weight_filler {
|
| 481 |
+
type: "msra"
|
| 482 |
+
}
|
| 483 |
+
bias_filler {
|
| 484 |
+
type: "constant"
|
| 485 |
+
value: 0.0
|
| 486 |
+
}
|
| 487 |
+
}
|
| 488 |
+
}
|
| 489 |
+
layer {
|
| 490 |
+
name: "layer_256_1_conv_expand"
|
| 491 |
+
type: "Convolution"
|
| 492 |
+
bottom: "layer_256_1_bn1"
|
| 493 |
+
top: "layer_256_1_conv_expand"
|
| 494 |
+
param {
|
| 495 |
+
lr_mult: 1.0
|
| 496 |
+
decay_mult: 1.0
|
| 497 |
+
}
|
| 498 |
+
convolution_param {
|
| 499 |
+
num_output: 256
|
| 500 |
+
bias_term: false
|
| 501 |
+
pad: 0
|
| 502 |
+
kernel_size: 1
|
| 503 |
+
stride: 2
|
| 504 |
+
weight_filler {
|
| 505 |
+
type: "msra"
|
| 506 |
+
}
|
| 507 |
+
bias_filler {
|
| 508 |
+
type: "constant"
|
| 509 |
+
value: 0.0
|
| 510 |
+
}
|
| 511 |
+
}
|
| 512 |
+
}
|
| 513 |
+
layer {
|
| 514 |
+
name: "layer_256_1_sum"
|
| 515 |
+
type: "Eltwise"
|
| 516 |
+
bottom: "layer_256_1_conv2"
|
| 517 |
+
bottom: "layer_256_1_conv_expand"
|
| 518 |
+
top: "layer_256_1_sum"
|
| 519 |
+
}
|
| 520 |
+
layer {
|
| 521 |
+
name: "layer_512_1_bn1"
|
| 522 |
+
type: "BatchNorm"
|
| 523 |
+
bottom: "layer_256_1_sum"
|
| 524 |
+
top: "layer_512_1_bn1"
|
| 525 |
+
param {
|
| 526 |
+
lr_mult: 0.0
|
| 527 |
+
}
|
| 528 |
+
param {
|
| 529 |
+
lr_mult: 0.0
|
| 530 |
+
}
|
| 531 |
+
param {
|
| 532 |
+
lr_mult: 0.0
|
| 533 |
+
}
|
| 534 |
+
}
|
| 535 |
+
layer {
|
| 536 |
+
name: "layer_512_1_scale1"
|
| 537 |
+
type: "Scale"
|
| 538 |
+
bottom: "layer_512_1_bn1"
|
| 539 |
+
top: "layer_512_1_bn1"
|
| 540 |
+
param {
|
| 541 |
+
lr_mult: 1.0
|
| 542 |
+
decay_mult: 1.0
|
| 543 |
+
}
|
| 544 |
+
param {
|
| 545 |
+
lr_mult: 2.0
|
| 546 |
+
decay_mult: 1.0
|
| 547 |
+
}
|
| 548 |
+
scale_param {
|
| 549 |
+
bias_term: true
|
| 550 |
+
}
|
| 551 |
+
}
|
| 552 |
+
layer {
|
| 553 |
+
name: "layer_512_1_relu1"
|
| 554 |
+
type: "ReLU"
|
| 555 |
+
bottom: "layer_512_1_bn1"
|
| 556 |
+
top: "layer_512_1_bn1"
|
| 557 |
+
}
|
| 558 |
+
layer {
|
| 559 |
+
name: "layer_512_1_conv1_h"
|
| 560 |
+
type: "Convolution"
|
| 561 |
+
bottom: "layer_512_1_bn1"
|
| 562 |
+
top: "layer_512_1_conv1_h"
|
| 563 |
+
param {
|
| 564 |
+
lr_mult: 1.0
|
| 565 |
+
decay_mult: 1.0
|
| 566 |
+
}
|
| 567 |
+
convolution_param {
|
| 568 |
+
num_output: 128
|
| 569 |
+
bias_term: false
|
| 570 |
+
pad: 1
|
| 571 |
+
kernel_size: 3
|
| 572 |
+
stride: 1 # 2
|
| 573 |
+
weight_filler {
|
| 574 |
+
type: "msra"
|
| 575 |
+
}
|
| 576 |
+
bias_filler {
|
| 577 |
+
type: "constant"
|
| 578 |
+
value: 0.0
|
| 579 |
+
}
|
| 580 |
+
}
|
| 581 |
+
}
|
| 582 |
+
layer {
|
| 583 |
+
name: "layer_512_1_bn2_h"
|
| 584 |
+
type: "BatchNorm"
|
| 585 |
+
bottom: "layer_512_1_conv1_h"
|
| 586 |
+
top: "layer_512_1_conv1_h"
|
| 587 |
+
param {
|
| 588 |
+
lr_mult: 0.0
|
| 589 |
+
}
|
| 590 |
+
param {
|
| 591 |
+
lr_mult: 0.0
|
| 592 |
+
}
|
| 593 |
+
param {
|
| 594 |
+
lr_mult: 0.0
|
| 595 |
+
}
|
| 596 |
+
}
|
| 597 |
+
layer {
|
| 598 |
+
name: "layer_512_1_scale2_h"
|
| 599 |
+
type: "Scale"
|
| 600 |
+
bottom: "layer_512_1_conv1_h"
|
| 601 |
+
top: "layer_512_1_conv1_h"
|
| 602 |
+
param {
|
| 603 |
+
lr_mult: 1.0
|
| 604 |
+
decay_mult: 1.0
|
| 605 |
+
}
|
| 606 |
+
param {
|
| 607 |
+
lr_mult: 2.0
|
| 608 |
+
decay_mult: 1.0
|
| 609 |
+
}
|
| 610 |
+
scale_param {
|
| 611 |
+
bias_term: true
|
| 612 |
+
}
|
| 613 |
+
}
|
| 614 |
+
layer {
|
| 615 |
+
name: "layer_512_1_relu2"
|
| 616 |
+
type: "ReLU"
|
| 617 |
+
bottom: "layer_512_1_conv1_h"
|
| 618 |
+
top: "layer_512_1_conv1_h"
|
| 619 |
+
}
|
| 620 |
+
layer {
|
| 621 |
+
name: "layer_512_1_conv2_h"
|
| 622 |
+
type: "Convolution"
|
| 623 |
+
bottom: "layer_512_1_conv1_h"
|
| 624 |
+
top: "layer_512_1_conv2_h"
|
| 625 |
+
param {
|
| 626 |
+
lr_mult: 1.0
|
| 627 |
+
decay_mult: 1.0
|
| 628 |
+
}
|
| 629 |
+
convolution_param {
|
| 630 |
+
num_output: 256
|
| 631 |
+
bias_term: false
|
| 632 |
+
pad: 2 # 1
|
| 633 |
+
kernel_size: 3
|
| 634 |
+
stride: 1
|
| 635 |
+
dilation: 2
|
| 636 |
+
weight_filler {
|
| 637 |
+
type: "msra"
|
| 638 |
+
}
|
| 639 |
+
bias_filler {
|
| 640 |
+
type: "constant"
|
| 641 |
+
value: 0.0
|
| 642 |
+
}
|
| 643 |
+
}
|
| 644 |
+
}
|
| 645 |
+
layer {
|
| 646 |
+
name: "layer_512_1_conv_expand_h"
|
| 647 |
+
type: "Convolution"
|
| 648 |
+
bottom: "layer_512_1_bn1"
|
| 649 |
+
top: "layer_512_1_conv_expand_h"
|
| 650 |
+
param {
|
| 651 |
+
lr_mult: 1.0
|
| 652 |
+
decay_mult: 1.0
|
| 653 |
+
}
|
| 654 |
+
convolution_param {
|
| 655 |
+
num_output: 256
|
| 656 |
+
bias_term: false
|
| 657 |
+
pad: 0
|
| 658 |
+
kernel_size: 1
|
| 659 |
+
stride: 1 # 2
|
| 660 |
+
weight_filler {
|
| 661 |
+
type: "msra"
|
| 662 |
+
}
|
| 663 |
+
bias_filler {
|
| 664 |
+
type: "constant"
|
| 665 |
+
value: 0.0
|
| 666 |
+
}
|
| 667 |
+
}
|
| 668 |
+
}
|
| 669 |
+
layer {
|
| 670 |
+
name: "layer_512_1_sum"
|
| 671 |
+
type: "Eltwise"
|
| 672 |
+
bottom: "layer_512_1_conv2_h"
|
| 673 |
+
bottom: "layer_512_1_conv_expand_h"
|
| 674 |
+
top: "layer_512_1_sum"
|
| 675 |
+
}
|
| 676 |
+
layer {
|
| 677 |
+
name: "last_bn_h"
|
| 678 |
+
type: "BatchNorm"
|
| 679 |
+
bottom: "layer_512_1_sum"
|
| 680 |
+
top: "layer_512_1_sum"
|
| 681 |
+
param {
|
| 682 |
+
lr_mult: 0.0
|
| 683 |
+
}
|
| 684 |
+
param {
|
| 685 |
+
lr_mult: 0.0
|
| 686 |
+
}
|
| 687 |
+
param {
|
| 688 |
+
lr_mult: 0.0
|
| 689 |
+
}
|
| 690 |
+
}
|
| 691 |
+
layer {
|
| 692 |
+
name: "last_scale_h"
|
| 693 |
+
type: "Scale"
|
| 694 |
+
bottom: "layer_512_1_sum"
|
| 695 |
+
top: "layer_512_1_sum"
|
| 696 |
+
param {
|
| 697 |
+
lr_mult: 1.0
|
| 698 |
+
decay_mult: 1.0
|
| 699 |
+
}
|
| 700 |
+
param {
|
| 701 |
+
lr_mult: 2.0
|
| 702 |
+
decay_mult: 1.0
|
| 703 |
+
}
|
| 704 |
+
scale_param {
|
| 705 |
+
bias_term: true
|
| 706 |
+
}
|
| 707 |
+
}
|
| 708 |
+
layer {
|
| 709 |
+
name: "last_relu"
|
| 710 |
+
type: "ReLU"
|
| 711 |
+
bottom: "layer_512_1_sum"
|
| 712 |
+
top: "fc7"
|
| 713 |
+
}
|
| 714 |
+
|
| 715 |
+
layer {
|
| 716 |
+
name: "conv6_1_h"
|
| 717 |
+
type: "Convolution"
|
| 718 |
+
bottom: "fc7"
|
| 719 |
+
top: "conv6_1_h"
|
| 720 |
+
param {
|
| 721 |
+
lr_mult: 1
|
| 722 |
+
decay_mult: 1
|
| 723 |
+
}
|
| 724 |
+
param {
|
| 725 |
+
lr_mult: 2
|
| 726 |
+
decay_mult: 0
|
| 727 |
+
}
|
| 728 |
+
convolution_param {
|
| 729 |
+
num_output: 128
|
| 730 |
+
pad: 0
|
| 731 |
+
kernel_size: 1
|
| 732 |
+
stride: 1
|
| 733 |
+
weight_filler {
|
| 734 |
+
type: "xavier"
|
| 735 |
+
}
|
| 736 |
+
bias_filler {
|
| 737 |
+
type: "constant"
|
| 738 |
+
value: 0
|
| 739 |
+
}
|
| 740 |
+
}
|
| 741 |
+
}
|
| 742 |
+
layer {
|
| 743 |
+
name: "conv6_1_relu"
|
| 744 |
+
type: "ReLU"
|
| 745 |
+
bottom: "conv6_1_h"
|
| 746 |
+
top: "conv6_1_h"
|
| 747 |
+
}
|
| 748 |
+
layer {
|
| 749 |
+
name: "conv6_2_h"
|
| 750 |
+
type: "Convolution"
|
| 751 |
+
bottom: "conv6_1_h"
|
| 752 |
+
top: "conv6_2_h"
|
| 753 |
+
param {
|
| 754 |
+
lr_mult: 1
|
| 755 |
+
decay_mult: 1
|
| 756 |
+
}
|
| 757 |
+
param {
|
| 758 |
+
lr_mult: 2
|
| 759 |
+
decay_mult: 0
|
| 760 |
+
}
|
| 761 |
+
convolution_param {
|
| 762 |
+
num_output: 256
|
| 763 |
+
pad: 1
|
| 764 |
+
kernel_size: 3
|
| 765 |
+
stride: 2
|
| 766 |
+
weight_filler {
|
| 767 |
+
type: "xavier"
|
| 768 |
+
}
|
| 769 |
+
bias_filler {
|
| 770 |
+
type: "constant"
|
| 771 |
+
value: 0
|
| 772 |
+
}
|
| 773 |
+
}
|
| 774 |
+
}
|
| 775 |
+
layer {
|
| 776 |
+
name: "conv6_2_relu"
|
| 777 |
+
type: "ReLU"
|
| 778 |
+
bottom: "conv6_2_h"
|
| 779 |
+
top: "conv6_2_h"
|
| 780 |
+
}
|
| 781 |
+
layer {
|
| 782 |
+
name: "conv7_1_h"
|
| 783 |
+
type: "Convolution"
|
| 784 |
+
bottom: "conv6_2_h"
|
| 785 |
+
top: "conv7_1_h"
|
| 786 |
+
param {
|
| 787 |
+
lr_mult: 1
|
| 788 |
+
decay_mult: 1
|
| 789 |
+
}
|
| 790 |
+
param {
|
| 791 |
+
lr_mult: 2
|
| 792 |
+
decay_mult: 0
|
| 793 |
+
}
|
| 794 |
+
convolution_param {
|
| 795 |
+
num_output: 64
|
| 796 |
+
pad: 0
|
| 797 |
+
kernel_size: 1
|
| 798 |
+
stride: 1
|
| 799 |
+
weight_filler {
|
| 800 |
+
type: "xavier"
|
| 801 |
+
}
|
| 802 |
+
bias_filler {
|
| 803 |
+
type: "constant"
|
| 804 |
+
value: 0
|
| 805 |
+
}
|
| 806 |
+
}
|
| 807 |
+
}
|
| 808 |
+
layer {
|
| 809 |
+
name: "conv7_1_relu"
|
| 810 |
+
type: "ReLU"
|
| 811 |
+
bottom: "conv7_1_h"
|
| 812 |
+
top: "conv7_1_h"
|
| 813 |
+
}
|
| 814 |
+
layer {
|
| 815 |
+
name: "conv7_2_h"
|
| 816 |
+
type: "Convolution"
|
| 817 |
+
bottom: "conv7_1_h"
|
| 818 |
+
top: "conv7_2_h"
|
| 819 |
+
param {
|
| 820 |
+
lr_mult: 1
|
| 821 |
+
decay_mult: 1
|
| 822 |
+
}
|
| 823 |
+
param {
|
| 824 |
+
lr_mult: 2
|
| 825 |
+
decay_mult: 0
|
| 826 |
+
}
|
| 827 |
+
convolution_param {
|
| 828 |
+
num_output: 128
|
| 829 |
+
pad: 1
|
| 830 |
+
kernel_size: 3
|
| 831 |
+
stride: 2
|
| 832 |
+
weight_filler {
|
| 833 |
+
type: "xavier"
|
| 834 |
+
}
|
| 835 |
+
bias_filler {
|
| 836 |
+
type: "constant"
|
| 837 |
+
value: 0
|
| 838 |
+
}
|
| 839 |
+
}
|
| 840 |
+
}
|
| 841 |
+
layer {
|
| 842 |
+
name: "conv7_2_relu"
|
| 843 |
+
type: "ReLU"
|
| 844 |
+
bottom: "conv7_2_h"
|
| 845 |
+
top: "conv7_2_h"
|
| 846 |
+
}
|
| 847 |
+
layer {
|
| 848 |
+
name: "conv8_1_h"
|
| 849 |
+
type: "Convolution"
|
| 850 |
+
bottom: "conv7_2_h"
|
| 851 |
+
top: "conv8_1_h"
|
| 852 |
+
param {
|
| 853 |
+
lr_mult: 1
|
| 854 |
+
decay_mult: 1
|
| 855 |
+
}
|
| 856 |
+
param {
|
| 857 |
+
lr_mult: 2
|
| 858 |
+
decay_mult: 0
|
| 859 |
+
}
|
| 860 |
+
convolution_param {
|
| 861 |
+
num_output: 64
|
| 862 |
+
pad: 0
|
| 863 |
+
kernel_size: 1
|
| 864 |
+
stride: 1
|
| 865 |
+
weight_filler {
|
| 866 |
+
type: "xavier"
|
| 867 |
+
}
|
| 868 |
+
bias_filler {
|
| 869 |
+
type: "constant"
|
| 870 |
+
value: 0
|
| 871 |
+
}
|
| 872 |
+
}
|
| 873 |
+
}
|
| 874 |
+
layer {
|
| 875 |
+
name: "conv8_1_relu"
|
| 876 |
+
type: "ReLU"
|
| 877 |
+
bottom: "conv8_1_h"
|
| 878 |
+
top: "conv8_1_h"
|
| 879 |
+
}
|
| 880 |
+
layer {
|
| 881 |
+
name: "conv8_2_h"
|
| 882 |
+
type: "Convolution"
|
| 883 |
+
bottom: "conv8_1_h"
|
| 884 |
+
top: "conv8_2_h"
|
| 885 |
+
param {
|
| 886 |
+
lr_mult: 1
|
| 887 |
+
decay_mult: 1
|
| 888 |
+
}
|
| 889 |
+
param {
|
| 890 |
+
lr_mult: 2
|
| 891 |
+
decay_mult: 0
|
| 892 |
+
}
|
| 893 |
+
convolution_param {
|
| 894 |
+
num_output: 128
|
| 895 |
+
pad: 0
|
| 896 |
+
kernel_size: 3
|
| 897 |
+
stride: 1
|
| 898 |
+
weight_filler {
|
| 899 |
+
type: "xavier"
|
| 900 |
+
}
|
| 901 |
+
bias_filler {
|
| 902 |
+
type: "constant"
|
| 903 |
+
value: 0
|
| 904 |
+
}
|
| 905 |
+
}
|
| 906 |
+
}
|
| 907 |
+
layer {
|
| 908 |
+
name: "conv8_2_relu"
|
| 909 |
+
type: "ReLU"
|
| 910 |
+
bottom: "conv8_2_h"
|
| 911 |
+
top: "conv8_2_h"
|
| 912 |
+
}
|
| 913 |
+
layer {
|
| 914 |
+
name: "conv9_1_h"
|
| 915 |
+
type: "Convolution"
|
| 916 |
+
bottom: "conv8_2_h"
|
| 917 |
+
top: "conv9_1_h"
|
| 918 |
+
param {
|
| 919 |
+
lr_mult: 1
|
| 920 |
+
decay_mult: 1
|
| 921 |
+
}
|
| 922 |
+
param {
|
| 923 |
+
lr_mult: 2
|
| 924 |
+
decay_mult: 0
|
| 925 |
+
}
|
| 926 |
+
convolution_param {
|
| 927 |
+
num_output: 64
|
| 928 |
+
pad: 0
|
| 929 |
+
kernel_size: 1
|
| 930 |
+
stride: 1
|
| 931 |
+
weight_filler {
|
| 932 |
+
type: "xavier"
|
| 933 |
+
}
|
| 934 |
+
bias_filler {
|
| 935 |
+
type: "constant"
|
| 936 |
+
value: 0
|
| 937 |
+
}
|
| 938 |
+
}
|
| 939 |
+
}
|
| 940 |
+
layer {
|
| 941 |
+
name: "conv9_1_relu"
|
| 942 |
+
type: "ReLU"
|
| 943 |
+
bottom: "conv9_1_h"
|
| 944 |
+
top: "conv9_1_h"
|
| 945 |
+
}
|
| 946 |
+
layer {
|
| 947 |
+
name: "conv9_2_h"
|
| 948 |
+
type: "Convolution"
|
| 949 |
+
bottom: "conv9_1_h"
|
| 950 |
+
top: "conv9_2_h"
|
| 951 |
+
param {
|
| 952 |
+
lr_mult: 1
|
| 953 |
+
decay_mult: 1
|
| 954 |
+
}
|
| 955 |
+
param {
|
| 956 |
+
lr_mult: 2
|
| 957 |
+
decay_mult: 0
|
| 958 |
+
}
|
| 959 |
+
convolution_param {
|
| 960 |
+
num_output: 128
|
| 961 |
+
pad: 0
|
| 962 |
+
kernel_size: 3
|
| 963 |
+
stride: 1
|
| 964 |
+
weight_filler {
|
| 965 |
+
type: "xavier"
|
| 966 |
+
}
|
| 967 |
+
bias_filler {
|
| 968 |
+
type: "constant"
|
| 969 |
+
value: 0
|
| 970 |
+
}
|
| 971 |
+
}
|
| 972 |
+
}
|
| 973 |
+
layer {
|
| 974 |
+
name: "conv9_2_relu"
|
| 975 |
+
type: "ReLU"
|
| 976 |
+
bottom: "conv9_2_h"
|
| 977 |
+
top: "conv9_2_h"
|
| 978 |
+
}
|
| 979 |
+
layer {
|
| 980 |
+
name: "conv4_3_norm"
|
| 981 |
+
type: "Normalize"
|
| 982 |
+
bottom: "layer_256_1_bn1"
|
| 983 |
+
top: "conv4_3_norm"
|
| 984 |
+
norm_param {
|
| 985 |
+
across_spatial: false
|
| 986 |
+
scale_filler {
|
| 987 |
+
type: "constant"
|
| 988 |
+
value: 20
|
| 989 |
+
}
|
| 990 |
+
channel_shared: false
|
| 991 |
+
}
|
| 992 |
+
}
|
| 993 |
+
layer {
|
| 994 |
+
name: "conv4_3_norm_mbox_loc"
|
| 995 |
+
type: "Convolution"
|
| 996 |
+
bottom: "conv4_3_norm"
|
| 997 |
+
top: "conv4_3_norm_mbox_loc"
|
| 998 |
+
param {
|
| 999 |
+
lr_mult: 1
|
| 1000 |
+
decay_mult: 1
|
| 1001 |
+
}
|
| 1002 |
+
param {
|
| 1003 |
+
lr_mult: 2
|
| 1004 |
+
decay_mult: 0
|
| 1005 |
+
}
|
| 1006 |
+
convolution_param {
|
| 1007 |
+
num_output: 16
|
| 1008 |
+
pad: 1
|
| 1009 |
+
kernel_size: 3
|
| 1010 |
+
stride: 1
|
| 1011 |
+
weight_filler {
|
| 1012 |
+
type: "xavier"
|
| 1013 |
+
}
|
| 1014 |
+
bias_filler {
|
| 1015 |
+
type: "constant"
|
| 1016 |
+
value: 0
|
| 1017 |
+
}
|
| 1018 |
+
}
|
| 1019 |
+
}
|
| 1020 |
+
layer {
|
| 1021 |
+
name: "conv4_3_norm_mbox_loc_perm"
|
| 1022 |
+
type: "Permute"
|
| 1023 |
+
bottom: "conv4_3_norm_mbox_loc"
|
| 1024 |
+
top: "conv4_3_norm_mbox_loc_perm"
|
| 1025 |
+
permute_param {
|
| 1026 |
+
order: 0
|
| 1027 |
+
order: 2
|
| 1028 |
+
order: 3
|
| 1029 |
+
order: 1
|
| 1030 |
+
}
|
| 1031 |
+
}
|
| 1032 |
+
layer {
|
| 1033 |
+
name: "conv4_3_norm_mbox_loc_flat"
|
| 1034 |
+
type: "Flatten"
|
| 1035 |
+
bottom: "conv4_3_norm_mbox_loc_perm"
|
| 1036 |
+
top: "conv4_3_norm_mbox_loc_flat"
|
| 1037 |
+
flatten_param {
|
| 1038 |
+
axis: 1
|
| 1039 |
+
}
|
| 1040 |
+
}
|
| 1041 |
+
layer {
|
| 1042 |
+
name: "conv4_3_norm_mbox_conf"
|
| 1043 |
+
type: "Convolution"
|
| 1044 |
+
bottom: "conv4_3_norm"
|
| 1045 |
+
top: "conv4_3_norm_mbox_conf"
|
| 1046 |
+
param {
|
| 1047 |
+
lr_mult: 1
|
| 1048 |
+
decay_mult: 1
|
| 1049 |
+
}
|
| 1050 |
+
param {
|
| 1051 |
+
lr_mult: 2
|
| 1052 |
+
decay_mult: 0
|
| 1053 |
+
}
|
| 1054 |
+
convolution_param {
|
| 1055 |
+
num_output: 8 # 84
|
| 1056 |
+
pad: 1
|
| 1057 |
+
kernel_size: 3
|
| 1058 |
+
stride: 1
|
| 1059 |
+
weight_filler {
|
| 1060 |
+
type: "xavier"
|
| 1061 |
+
}
|
| 1062 |
+
bias_filler {
|
| 1063 |
+
type: "constant"
|
| 1064 |
+
value: 0
|
| 1065 |
+
}
|
| 1066 |
+
}
|
| 1067 |
+
}
|
| 1068 |
+
layer {
|
| 1069 |
+
name: "conv4_3_norm_mbox_conf_perm"
|
| 1070 |
+
type: "Permute"
|
| 1071 |
+
bottom: "conv4_3_norm_mbox_conf"
|
| 1072 |
+
top: "conv4_3_norm_mbox_conf_perm"
|
| 1073 |
+
permute_param {
|
| 1074 |
+
order: 0
|
| 1075 |
+
order: 2
|
| 1076 |
+
order: 3
|
| 1077 |
+
order: 1
|
| 1078 |
+
}
|
| 1079 |
+
}
|
| 1080 |
+
layer {
|
| 1081 |
+
name: "conv4_3_norm_mbox_conf_flat"
|
| 1082 |
+
type: "Flatten"
|
| 1083 |
+
bottom: "conv4_3_norm_mbox_conf_perm"
|
| 1084 |
+
top: "conv4_3_norm_mbox_conf_flat"
|
| 1085 |
+
flatten_param {
|
| 1086 |
+
axis: 1
|
| 1087 |
+
}
|
| 1088 |
+
}
|
| 1089 |
+
layer {
|
| 1090 |
+
name: "conv4_3_norm_mbox_priorbox"
|
| 1091 |
+
type: "PriorBox"
|
| 1092 |
+
bottom: "conv4_3_norm"
|
| 1093 |
+
bottom: "data"
|
| 1094 |
+
top: "conv4_3_norm_mbox_priorbox"
|
| 1095 |
+
prior_box_param {
|
| 1096 |
+
min_size: 30.0
|
| 1097 |
+
max_size: 60.0
|
| 1098 |
+
aspect_ratio: 2
|
| 1099 |
+
flip: true
|
| 1100 |
+
clip: false
|
| 1101 |
+
variance: 0.1
|
| 1102 |
+
variance: 0.1
|
| 1103 |
+
variance: 0.2
|
| 1104 |
+
variance: 0.2
|
| 1105 |
+
step: 8
|
| 1106 |
+
offset: 0.5
|
| 1107 |
+
}
|
| 1108 |
+
}
|
| 1109 |
+
layer {
|
| 1110 |
+
name: "fc7_mbox_loc"
|
| 1111 |
+
type: "Convolution"
|
| 1112 |
+
bottom: "fc7"
|
| 1113 |
+
top: "fc7_mbox_loc"
|
| 1114 |
+
param {
|
| 1115 |
+
lr_mult: 1
|
| 1116 |
+
decay_mult: 1
|
| 1117 |
+
}
|
| 1118 |
+
param {
|
| 1119 |
+
lr_mult: 2
|
| 1120 |
+
decay_mult: 0
|
| 1121 |
+
}
|
| 1122 |
+
convolution_param {
|
| 1123 |
+
num_output: 24
|
| 1124 |
+
pad: 1
|
| 1125 |
+
kernel_size: 3
|
| 1126 |
+
stride: 1
|
| 1127 |
+
weight_filler {
|
| 1128 |
+
type: "xavier"
|
| 1129 |
+
}
|
| 1130 |
+
bias_filler {
|
| 1131 |
+
type: "constant"
|
| 1132 |
+
value: 0
|
| 1133 |
+
}
|
| 1134 |
+
}
|
| 1135 |
+
}
|
| 1136 |
+
layer {
|
| 1137 |
+
name: "fc7_mbox_loc_perm"
|
| 1138 |
+
type: "Permute"
|
| 1139 |
+
bottom: "fc7_mbox_loc"
|
| 1140 |
+
top: "fc7_mbox_loc_perm"
|
| 1141 |
+
permute_param {
|
| 1142 |
+
order: 0
|
| 1143 |
+
order: 2
|
| 1144 |
+
order: 3
|
| 1145 |
+
order: 1
|
| 1146 |
+
}
|
| 1147 |
+
}
|
| 1148 |
+
layer {
|
| 1149 |
+
name: "fc7_mbox_loc_flat"
|
| 1150 |
+
type: "Flatten"
|
| 1151 |
+
bottom: "fc7_mbox_loc_perm"
|
| 1152 |
+
top: "fc7_mbox_loc_flat"
|
| 1153 |
+
flatten_param {
|
| 1154 |
+
axis: 1
|
| 1155 |
+
}
|
| 1156 |
+
}
|
| 1157 |
+
layer {
|
| 1158 |
+
name: "fc7_mbox_conf"
|
| 1159 |
+
type: "Convolution"
|
| 1160 |
+
bottom: "fc7"
|
| 1161 |
+
top: "fc7_mbox_conf"
|
| 1162 |
+
param {
|
| 1163 |
+
lr_mult: 1
|
| 1164 |
+
decay_mult: 1
|
| 1165 |
+
}
|
| 1166 |
+
param {
|
| 1167 |
+
lr_mult: 2
|
| 1168 |
+
decay_mult: 0
|
| 1169 |
+
}
|
| 1170 |
+
convolution_param {
|
| 1171 |
+
num_output: 12 # 126
|
| 1172 |
+
pad: 1
|
| 1173 |
+
kernel_size: 3
|
| 1174 |
+
stride: 1
|
| 1175 |
+
weight_filler {
|
| 1176 |
+
type: "xavier"
|
| 1177 |
+
}
|
| 1178 |
+
bias_filler {
|
| 1179 |
+
type: "constant"
|
| 1180 |
+
value: 0
|
| 1181 |
+
}
|
| 1182 |
+
}
|
| 1183 |
+
}
|
| 1184 |
+
layer {
|
| 1185 |
+
name: "fc7_mbox_conf_perm"
|
| 1186 |
+
type: "Permute"
|
| 1187 |
+
bottom: "fc7_mbox_conf"
|
| 1188 |
+
top: "fc7_mbox_conf_perm"
|
| 1189 |
+
permute_param {
|
| 1190 |
+
order: 0
|
| 1191 |
+
order: 2
|
| 1192 |
+
order: 3
|
| 1193 |
+
order: 1
|
| 1194 |
+
}
|
| 1195 |
+
}
|
| 1196 |
+
layer {
|
| 1197 |
+
name: "fc7_mbox_conf_flat"
|
| 1198 |
+
type: "Flatten"
|
| 1199 |
+
bottom: "fc7_mbox_conf_perm"
|
| 1200 |
+
top: "fc7_mbox_conf_flat"
|
| 1201 |
+
flatten_param {
|
| 1202 |
+
axis: 1
|
| 1203 |
+
}
|
| 1204 |
+
}
|
| 1205 |
+
layer {
|
| 1206 |
+
name: "fc7_mbox_priorbox"
|
| 1207 |
+
type: "PriorBox"
|
| 1208 |
+
bottom: "fc7"
|
| 1209 |
+
bottom: "data"
|
| 1210 |
+
top: "fc7_mbox_priorbox"
|
| 1211 |
+
prior_box_param {
|
| 1212 |
+
min_size: 60.0
|
| 1213 |
+
max_size: 111.0
|
| 1214 |
+
aspect_ratio: 2
|
| 1215 |
+
aspect_ratio: 3
|
| 1216 |
+
flip: true
|
| 1217 |
+
clip: false
|
| 1218 |
+
variance: 0.1
|
| 1219 |
+
variance: 0.1
|
| 1220 |
+
variance: 0.2
|
| 1221 |
+
variance: 0.2
|
| 1222 |
+
step: 16
|
| 1223 |
+
offset: 0.5
|
| 1224 |
+
}
|
| 1225 |
+
}
|
| 1226 |
+
layer {
|
| 1227 |
+
name: "conv6_2_mbox_loc"
|
| 1228 |
+
type: "Convolution"
|
| 1229 |
+
bottom: "conv6_2_h"
|
| 1230 |
+
top: "conv6_2_mbox_loc"
|
| 1231 |
+
param {
|
| 1232 |
+
lr_mult: 1
|
| 1233 |
+
decay_mult: 1
|
| 1234 |
+
}
|
| 1235 |
+
param {
|
| 1236 |
+
lr_mult: 2
|
| 1237 |
+
decay_mult: 0
|
| 1238 |
+
}
|
| 1239 |
+
convolution_param {
|
| 1240 |
+
num_output: 24
|
| 1241 |
+
pad: 1
|
| 1242 |
+
kernel_size: 3
|
| 1243 |
+
stride: 1
|
| 1244 |
+
weight_filler {
|
| 1245 |
+
type: "xavier"
|
| 1246 |
+
}
|
| 1247 |
+
bias_filler {
|
| 1248 |
+
type: "constant"
|
| 1249 |
+
value: 0
|
| 1250 |
+
}
|
| 1251 |
+
}
|
| 1252 |
+
}
|
| 1253 |
+
layer {
|
| 1254 |
+
name: "conv6_2_mbox_loc_perm"
|
| 1255 |
+
type: "Permute"
|
| 1256 |
+
bottom: "conv6_2_mbox_loc"
|
| 1257 |
+
top: "conv6_2_mbox_loc_perm"
|
| 1258 |
+
permute_param {
|
| 1259 |
+
order: 0
|
| 1260 |
+
order: 2
|
| 1261 |
+
order: 3
|
| 1262 |
+
order: 1
|
| 1263 |
+
}
|
| 1264 |
+
}
|
| 1265 |
+
layer {
|
| 1266 |
+
name: "conv6_2_mbox_loc_flat"
|
| 1267 |
+
type: "Flatten"
|
| 1268 |
+
bottom: "conv6_2_mbox_loc_perm"
|
| 1269 |
+
top: "conv6_2_mbox_loc_flat"
|
| 1270 |
+
flatten_param {
|
| 1271 |
+
axis: 1
|
| 1272 |
+
}
|
| 1273 |
+
}
|
| 1274 |
+
layer {
|
| 1275 |
+
name: "conv6_2_mbox_conf"
|
| 1276 |
+
type: "Convolution"
|
| 1277 |
+
bottom: "conv6_2_h"
|
| 1278 |
+
top: "conv6_2_mbox_conf"
|
| 1279 |
+
param {
|
| 1280 |
+
lr_mult: 1
|
| 1281 |
+
decay_mult: 1
|
| 1282 |
+
}
|
| 1283 |
+
param {
|
| 1284 |
+
lr_mult: 2
|
| 1285 |
+
decay_mult: 0
|
| 1286 |
+
}
|
| 1287 |
+
convolution_param {
|
| 1288 |
+
num_output: 12 # 126
|
| 1289 |
+
pad: 1
|
| 1290 |
+
kernel_size: 3
|
| 1291 |
+
stride: 1
|
| 1292 |
+
weight_filler {
|
| 1293 |
+
type: "xavier"
|
| 1294 |
+
}
|
| 1295 |
+
bias_filler {
|
| 1296 |
+
type: "constant"
|
| 1297 |
+
value: 0
|
| 1298 |
+
}
|
| 1299 |
+
}
|
| 1300 |
+
}
|
| 1301 |
+
layer {
|
| 1302 |
+
name: "conv6_2_mbox_conf_perm"
|
| 1303 |
+
type: "Permute"
|
| 1304 |
+
bottom: "conv6_2_mbox_conf"
|
| 1305 |
+
top: "conv6_2_mbox_conf_perm"
|
| 1306 |
+
permute_param {
|
| 1307 |
+
order: 0
|
| 1308 |
+
order: 2
|
| 1309 |
+
order: 3
|
| 1310 |
+
order: 1
|
| 1311 |
+
}
|
| 1312 |
+
}
|
| 1313 |
+
layer {
|
| 1314 |
+
name: "conv6_2_mbox_conf_flat"
|
| 1315 |
+
type: "Flatten"
|
| 1316 |
+
bottom: "conv6_2_mbox_conf_perm"
|
| 1317 |
+
top: "conv6_2_mbox_conf_flat"
|
| 1318 |
+
flatten_param {
|
| 1319 |
+
axis: 1
|
| 1320 |
+
}
|
| 1321 |
+
}
|
| 1322 |
+
layer {
|
| 1323 |
+
name: "conv6_2_mbox_priorbox"
|
| 1324 |
+
type: "PriorBox"
|
| 1325 |
+
bottom: "conv6_2_h"
|
| 1326 |
+
bottom: "data"
|
| 1327 |
+
top: "conv6_2_mbox_priorbox"
|
| 1328 |
+
prior_box_param {
|
| 1329 |
+
min_size: 111.0
|
| 1330 |
+
max_size: 162.0
|
| 1331 |
+
aspect_ratio: 2
|
| 1332 |
+
aspect_ratio: 3
|
| 1333 |
+
flip: true
|
| 1334 |
+
clip: false
|
| 1335 |
+
variance: 0.1
|
| 1336 |
+
variance: 0.1
|
| 1337 |
+
variance: 0.2
|
| 1338 |
+
variance: 0.2
|
| 1339 |
+
step: 32
|
| 1340 |
+
offset: 0.5
|
| 1341 |
+
}
|
| 1342 |
+
}
|
| 1343 |
+
layer {
|
| 1344 |
+
name: "conv7_2_mbox_loc"
|
| 1345 |
+
type: "Convolution"
|
| 1346 |
+
bottom: "conv7_2_h"
|
| 1347 |
+
top: "conv7_2_mbox_loc"
|
| 1348 |
+
param {
|
| 1349 |
+
lr_mult: 1
|
| 1350 |
+
decay_mult: 1
|
| 1351 |
+
}
|
| 1352 |
+
param {
|
| 1353 |
+
lr_mult: 2
|
| 1354 |
+
decay_mult: 0
|
| 1355 |
+
}
|
| 1356 |
+
convolution_param {
|
| 1357 |
+
num_output: 24
|
| 1358 |
+
pad: 1
|
| 1359 |
+
kernel_size: 3
|
| 1360 |
+
stride: 1
|
| 1361 |
+
weight_filler {
|
| 1362 |
+
type: "xavier"
|
| 1363 |
+
}
|
| 1364 |
+
bias_filler {
|
| 1365 |
+
type: "constant"
|
| 1366 |
+
value: 0
|
| 1367 |
+
}
|
| 1368 |
+
}
|
| 1369 |
+
}
|
| 1370 |
+
layer {
|
| 1371 |
+
name: "conv7_2_mbox_loc_perm"
|
| 1372 |
+
type: "Permute"
|
| 1373 |
+
bottom: "conv7_2_mbox_loc"
|
| 1374 |
+
top: "conv7_2_mbox_loc_perm"
|
| 1375 |
+
permute_param {
|
| 1376 |
+
order: 0
|
| 1377 |
+
order: 2
|
| 1378 |
+
order: 3
|
| 1379 |
+
order: 1
|
| 1380 |
+
}
|
| 1381 |
+
}
|
| 1382 |
+
layer {
|
| 1383 |
+
name: "conv7_2_mbox_loc_flat"
|
| 1384 |
+
type: "Flatten"
|
| 1385 |
+
bottom: "conv7_2_mbox_loc_perm"
|
| 1386 |
+
top: "conv7_2_mbox_loc_flat"
|
| 1387 |
+
flatten_param {
|
| 1388 |
+
axis: 1
|
| 1389 |
+
}
|
| 1390 |
+
}
|
| 1391 |
+
layer {
|
| 1392 |
+
name: "conv7_2_mbox_conf"
|
| 1393 |
+
type: "Convolution"
|
| 1394 |
+
bottom: "conv7_2_h"
|
| 1395 |
+
top: "conv7_2_mbox_conf"
|
| 1396 |
+
param {
|
| 1397 |
+
lr_mult: 1
|
| 1398 |
+
decay_mult: 1
|
| 1399 |
+
}
|
| 1400 |
+
param {
|
| 1401 |
+
lr_mult: 2
|
| 1402 |
+
decay_mult: 0
|
| 1403 |
+
}
|
| 1404 |
+
convolution_param {
|
| 1405 |
+
num_output: 12 # 126
|
| 1406 |
+
pad: 1
|
| 1407 |
+
kernel_size: 3
|
| 1408 |
+
stride: 1
|
| 1409 |
+
weight_filler {
|
| 1410 |
+
type: "xavier"
|
| 1411 |
+
}
|
| 1412 |
+
bias_filler {
|
| 1413 |
+
type: "constant"
|
| 1414 |
+
value: 0
|
| 1415 |
+
}
|
| 1416 |
+
}
|
| 1417 |
+
}
|
| 1418 |
+
layer {
|
| 1419 |
+
name: "conv7_2_mbox_conf_perm"
|
| 1420 |
+
type: "Permute"
|
| 1421 |
+
bottom: "conv7_2_mbox_conf"
|
| 1422 |
+
top: "conv7_2_mbox_conf_perm"
|
| 1423 |
+
permute_param {
|
| 1424 |
+
order: 0
|
| 1425 |
+
order: 2
|
| 1426 |
+
order: 3
|
| 1427 |
+
order: 1
|
| 1428 |
+
}
|
| 1429 |
+
}
|
| 1430 |
+
layer {
|
| 1431 |
+
name: "conv7_2_mbox_conf_flat"
|
| 1432 |
+
type: "Flatten"
|
| 1433 |
+
bottom: "conv7_2_mbox_conf_perm"
|
| 1434 |
+
top: "conv7_2_mbox_conf_flat"
|
| 1435 |
+
flatten_param {
|
| 1436 |
+
axis: 1
|
| 1437 |
+
}
|
| 1438 |
+
}
|
| 1439 |
+
layer {
|
| 1440 |
+
name: "conv7_2_mbox_priorbox"
|
| 1441 |
+
type: "PriorBox"
|
| 1442 |
+
bottom: "conv7_2_h"
|
| 1443 |
+
bottom: "data"
|
| 1444 |
+
top: "conv7_2_mbox_priorbox"
|
| 1445 |
+
prior_box_param {
|
| 1446 |
+
min_size: 162.0
|
| 1447 |
+
max_size: 213.0
|
| 1448 |
+
aspect_ratio: 2
|
| 1449 |
+
aspect_ratio: 3
|
| 1450 |
+
flip: true
|
| 1451 |
+
clip: false
|
| 1452 |
+
variance: 0.1
|
| 1453 |
+
variance: 0.1
|
| 1454 |
+
variance: 0.2
|
| 1455 |
+
variance: 0.2
|
| 1456 |
+
step: 64
|
| 1457 |
+
offset: 0.5
|
| 1458 |
+
}
|
| 1459 |
+
}
|
| 1460 |
+
layer {
|
| 1461 |
+
name: "conv8_2_mbox_loc"
|
| 1462 |
+
type: "Convolution"
|
| 1463 |
+
bottom: "conv8_2_h"
|
| 1464 |
+
top: "conv8_2_mbox_loc"
|
| 1465 |
+
param {
|
| 1466 |
+
lr_mult: 1
|
| 1467 |
+
decay_mult: 1
|
| 1468 |
+
}
|
| 1469 |
+
param {
|
| 1470 |
+
lr_mult: 2
|
| 1471 |
+
decay_mult: 0
|
| 1472 |
+
}
|
| 1473 |
+
convolution_param {
|
| 1474 |
+
num_output: 16
|
| 1475 |
+
pad: 1
|
| 1476 |
+
kernel_size: 3
|
| 1477 |
+
stride: 1
|
| 1478 |
+
weight_filler {
|
| 1479 |
+
type: "xavier"
|
| 1480 |
+
}
|
| 1481 |
+
bias_filler {
|
| 1482 |
+
type: "constant"
|
| 1483 |
+
value: 0
|
| 1484 |
+
}
|
| 1485 |
+
}
|
| 1486 |
+
}
|
| 1487 |
+
layer {
|
| 1488 |
+
name: "conv8_2_mbox_loc_perm"
|
| 1489 |
+
type: "Permute"
|
| 1490 |
+
bottom: "conv8_2_mbox_loc"
|
| 1491 |
+
top: "conv8_2_mbox_loc_perm"
|
| 1492 |
+
permute_param {
|
| 1493 |
+
order: 0
|
| 1494 |
+
order: 2
|
| 1495 |
+
order: 3
|
| 1496 |
+
order: 1
|
| 1497 |
+
}
|
| 1498 |
+
}
|
| 1499 |
+
layer {
|
| 1500 |
+
name: "conv8_2_mbox_loc_flat"
|
| 1501 |
+
type: "Flatten"
|
| 1502 |
+
bottom: "conv8_2_mbox_loc_perm"
|
| 1503 |
+
top: "conv8_2_mbox_loc_flat"
|
| 1504 |
+
flatten_param {
|
| 1505 |
+
axis: 1
|
| 1506 |
+
}
|
| 1507 |
+
}
|
| 1508 |
+
layer {
|
| 1509 |
+
name: "conv8_2_mbox_conf"
|
| 1510 |
+
type: "Convolution"
|
| 1511 |
+
bottom: "conv8_2_h"
|
| 1512 |
+
top: "conv8_2_mbox_conf"
|
| 1513 |
+
param {
|
| 1514 |
+
lr_mult: 1
|
| 1515 |
+
decay_mult: 1
|
| 1516 |
+
}
|
| 1517 |
+
param {
|
| 1518 |
+
lr_mult: 2
|
| 1519 |
+
decay_mult: 0
|
| 1520 |
+
}
|
| 1521 |
+
convolution_param {
|
| 1522 |
+
num_output: 8 # 84
|
| 1523 |
+
pad: 1
|
| 1524 |
+
kernel_size: 3
|
| 1525 |
+
stride: 1
|
| 1526 |
+
weight_filler {
|
| 1527 |
+
type: "xavier"
|
| 1528 |
+
}
|
| 1529 |
+
bias_filler {
|
| 1530 |
+
type: "constant"
|
| 1531 |
+
value: 0
|
| 1532 |
+
}
|
| 1533 |
+
}
|
| 1534 |
+
}
|
| 1535 |
+
layer {
|
| 1536 |
+
name: "conv8_2_mbox_conf_perm"
|
| 1537 |
+
type: "Permute"
|
| 1538 |
+
bottom: "conv8_2_mbox_conf"
|
| 1539 |
+
top: "conv8_2_mbox_conf_perm"
|
| 1540 |
+
permute_param {
|
| 1541 |
+
order: 0
|
| 1542 |
+
order: 2
|
| 1543 |
+
order: 3
|
| 1544 |
+
order: 1
|
| 1545 |
+
}
|
| 1546 |
+
}
|
| 1547 |
+
layer {
|
| 1548 |
+
name: "conv8_2_mbox_conf_flat"
|
| 1549 |
+
type: "Flatten"
|
| 1550 |
+
bottom: "conv8_2_mbox_conf_perm"
|
| 1551 |
+
top: "conv8_2_mbox_conf_flat"
|
| 1552 |
+
flatten_param {
|
| 1553 |
+
axis: 1
|
| 1554 |
+
}
|
| 1555 |
+
}
|
| 1556 |
+
layer {
|
| 1557 |
+
name: "conv8_2_mbox_priorbox"
|
| 1558 |
+
type: "PriorBox"
|
| 1559 |
+
bottom: "conv8_2_h"
|
| 1560 |
+
bottom: "data"
|
| 1561 |
+
top: "conv8_2_mbox_priorbox"
|
| 1562 |
+
prior_box_param {
|
| 1563 |
+
min_size: 213.0
|
| 1564 |
+
max_size: 264.0
|
| 1565 |
+
aspect_ratio: 2
|
| 1566 |
+
flip: true
|
| 1567 |
+
clip: false
|
| 1568 |
+
variance: 0.1
|
| 1569 |
+
variance: 0.1
|
| 1570 |
+
variance: 0.2
|
| 1571 |
+
variance: 0.2
|
| 1572 |
+
step: 100
|
| 1573 |
+
offset: 0.5
|
| 1574 |
+
}
|
| 1575 |
+
}
|
| 1576 |
+
layer {
|
| 1577 |
+
name: "conv9_2_mbox_loc"
|
| 1578 |
+
type: "Convolution"
|
| 1579 |
+
bottom: "conv9_2_h"
|
| 1580 |
+
top: "conv9_2_mbox_loc"
|
| 1581 |
+
param {
|
| 1582 |
+
lr_mult: 1
|
| 1583 |
+
decay_mult: 1
|
| 1584 |
+
}
|
| 1585 |
+
param {
|
| 1586 |
+
lr_mult: 2
|
| 1587 |
+
decay_mult: 0
|
| 1588 |
+
}
|
| 1589 |
+
convolution_param {
|
| 1590 |
+
num_output: 16
|
| 1591 |
+
pad: 1
|
| 1592 |
+
kernel_size: 3
|
| 1593 |
+
stride: 1
|
| 1594 |
+
weight_filler {
|
| 1595 |
+
type: "xavier"
|
| 1596 |
+
}
|
| 1597 |
+
bias_filler {
|
| 1598 |
+
type: "constant"
|
| 1599 |
+
value: 0
|
| 1600 |
+
}
|
| 1601 |
+
}
|
| 1602 |
+
}
|
| 1603 |
+
layer {
|
| 1604 |
+
name: "conv9_2_mbox_loc_perm"
|
| 1605 |
+
type: "Permute"
|
| 1606 |
+
bottom: "conv9_2_mbox_loc"
|
| 1607 |
+
top: "conv9_2_mbox_loc_perm"
|
| 1608 |
+
permute_param {
|
| 1609 |
+
order: 0
|
| 1610 |
+
order: 2
|
| 1611 |
+
order: 3
|
| 1612 |
+
order: 1
|
| 1613 |
+
}
|
| 1614 |
+
}
|
| 1615 |
+
layer {
|
| 1616 |
+
name: "conv9_2_mbox_loc_flat"
|
| 1617 |
+
type: "Flatten"
|
| 1618 |
+
bottom: "conv9_2_mbox_loc_perm"
|
| 1619 |
+
top: "conv9_2_mbox_loc_flat"
|
| 1620 |
+
flatten_param {
|
| 1621 |
+
axis: 1
|
| 1622 |
+
}
|
| 1623 |
+
}
|
| 1624 |
+
layer {
|
| 1625 |
+
name: "conv9_2_mbox_conf"
|
| 1626 |
+
type: "Convolution"
|
| 1627 |
+
bottom: "conv9_2_h"
|
| 1628 |
+
top: "conv9_2_mbox_conf"
|
| 1629 |
+
param {
|
| 1630 |
+
lr_mult: 1
|
| 1631 |
+
decay_mult: 1
|
| 1632 |
+
}
|
| 1633 |
+
param {
|
| 1634 |
+
lr_mult: 2
|
| 1635 |
+
decay_mult: 0
|
| 1636 |
+
}
|
| 1637 |
+
convolution_param {
|
| 1638 |
+
num_output: 8 # 84
|
| 1639 |
+
pad: 1
|
| 1640 |
+
kernel_size: 3
|
| 1641 |
+
stride: 1
|
| 1642 |
+
weight_filler {
|
| 1643 |
+
type: "xavier"
|
| 1644 |
+
}
|
| 1645 |
+
bias_filler {
|
| 1646 |
+
type: "constant"
|
| 1647 |
+
value: 0
|
| 1648 |
+
}
|
| 1649 |
+
}
|
| 1650 |
+
}
|
| 1651 |
+
layer {
|
| 1652 |
+
name: "conv9_2_mbox_conf_perm"
|
| 1653 |
+
type: "Permute"
|
| 1654 |
+
bottom: "conv9_2_mbox_conf"
|
| 1655 |
+
top: "conv9_2_mbox_conf_perm"
|
| 1656 |
+
permute_param {
|
| 1657 |
+
order: 0
|
| 1658 |
+
order: 2
|
| 1659 |
+
order: 3
|
| 1660 |
+
order: 1
|
| 1661 |
+
}
|
| 1662 |
+
}
|
| 1663 |
+
layer {
|
| 1664 |
+
name: "conv9_2_mbox_conf_flat"
|
| 1665 |
+
type: "Flatten"
|
| 1666 |
+
bottom: "conv9_2_mbox_conf_perm"
|
| 1667 |
+
top: "conv9_2_mbox_conf_flat"
|
| 1668 |
+
flatten_param {
|
| 1669 |
+
axis: 1
|
| 1670 |
+
}
|
| 1671 |
+
}
|
| 1672 |
+
layer {
|
| 1673 |
+
name: "conv9_2_mbox_priorbox"
|
| 1674 |
+
type: "PriorBox"
|
| 1675 |
+
bottom: "conv9_2_h"
|
| 1676 |
+
bottom: "data"
|
| 1677 |
+
top: "conv9_2_mbox_priorbox"
|
| 1678 |
+
prior_box_param {
|
| 1679 |
+
min_size: 264.0
|
| 1680 |
+
max_size: 315.0
|
| 1681 |
+
aspect_ratio: 2
|
| 1682 |
+
flip: true
|
| 1683 |
+
clip: false
|
| 1684 |
+
variance: 0.1
|
| 1685 |
+
variance: 0.1
|
| 1686 |
+
variance: 0.2
|
| 1687 |
+
variance: 0.2
|
| 1688 |
+
step: 300
|
| 1689 |
+
offset: 0.5
|
| 1690 |
+
}
|
| 1691 |
+
}
|
| 1692 |
+
layer {
|
| 1693 |
+
name: "mbox_loc"
|
| 1694 |
+
type: "Concat"
|
| 1695 |
+
bottom: "conv4_3_norm_mbox_loc_flat"
|
| 1696 |
+
bottom: "fc7_mbox_loc_flat"
|
| 1697 |
+
bottom: "conv6_2_mbox_loc_flat"
|
| 1698 |
+
bottom: "conv7_2_mbox_loc_flat"
|
| 1699 |
+
bottom: "conv8_2_mbox_loc_flat"
|
| 1700 |
+
bottom: "conv9_2_mbox_loc_flat"
|
| 1701 |
+
top: "mbox_loc"
|
| 1702 |
+
concat_param {
|
| 1703 |
+
axis: 1
|
| 1704 |
+
}
|
| 1705 |
+
}
|
| 1706 |
+
layer {
|
| 1707 |
+
name: "mbox_conf"
|
| 1708 |
+
type: "Concat"
|
| 1709 |
+
bottom: "conv4_3_norm_mbox_conf_flat"
|
| 1710 |
+
bottom: "fc7_mbox_conf_flat"
|
| 1711 |
+
bottom: "conv6_2_mbox_conf_flat"
|
| 1712 |
+
bottom: "conv7_2_mbox_conf_flat"
|
| 1713 |
+
bottom: "conv8_2_mbox_conf_flat"
|
| 1714 |
+
bottom: "conv9_2_mbox_conf_flat"
|
| 1715 |
+
top: "mbox_conf"
|
| 1716 |
+
concat_param {
|
| 1717 |
+
axis: 1
|
| 1718 |
+
}
|
| 1719 |
+
}
|
| 1720 |
+
layer {
|
| 1721 |
+
name: "mbox_priorbox"
|
| 1722 |
+
type: "Concat"
|
| 1723 |
+
bottom: "conv4_3_norm_mbox_priorbox"
|
| 1724 |
+
bottom: "fc7_mbox_priorbox"
|
| 1725 |
+
bottom: "conv6_2_mbox_priorbox"
|
| 1726 |
+
bottom: "conv7_2_mbox_priorbox"
|
| 1727 |
+
bottom: "conv8_2_mbox_priorbox"
|
| 1728 |
+
bottom: "conv9_2_mbox_priorbox"
|
| 1729 |
+
top: "mbox_priorbox"
|
| 1730 |
+
concat_param {
|
| 1731 |
+
axis: 2
|
| 1732 |
+
}
|
| 1733 |
+
}
|
| 1734 |
+
|
| 1735 |
+
layer {
|
| 1736 |
+
name: "mbox_conf_reshape"
|
| 1737 |
+
type: "Reshape"
|
| 1738 |
+
bottom: "mbox_conf"
|
| 1739 |
+
top: "mbox_conf_reshape"
|
| 1740 |
+
reshape_param {
|
| 1741 |
+
shape {
|
| 1742 |
+
dim: 0
|
| 1743 |
+
dim: -1
|
| 1744 |
+
dim: 2
|
| 1745 |
+
}
|
| 1746 |
+
}
|
| 1747 |
+
}
|
| 1748 |
+
layer {
|
| 1749 |
+
name: "mbox_conf_softmax"
|
| 1750 |
+
type: "Softmax"
|
| 1751 |
+
bottom: "mbox_conf_reshape"
|
| 1752 |
+
top: "mbox_conf_softmax"
|
| 1753 |
+
softmax_param {
|
| 1754 |
+
axis: 2
|
| 1755 |
+
}
|
| 1756 |
+
}
|
| 1757 |
+
layer {
|
| 1758 |
+
name: "mbox_conf_flatten"
|
| 1759 |
+
type: "Flatten"
|
| 1760 |
+
bottom: "mbox_conf_softmax"
|
| 1761 |
+
top: "mbox_conf_flatten"
|
| 1762 |
+
flatten_param {
|
| 1763 |
+
axis: 1
|
| 1764 |
+
}
|
| 1765 |
+
}
|
| 1766 |
+
|
| 1767 |
+
layer {
|
| 1768 |
+
name: "detection_out"
|
| 1769 |
+
type: "DetectionOutput"
|
| 1770 |
+
bottom: "mbox_loc"
|
| 1771 |
+
bottom: "mbox_conf_flatten"
|
| 1772 |
+
bottom: "mbox_priorbox"
|
| 1773 |
+
top: "detection_out"
|
| 1774 |
+
include {
|
| 1775 |
+
phase: TEST
|
| 1776 |
+
}
|
| 1777 |
+
detection_output_param {
|
| 1778 |
+
num_classes: 2
|
| 1779 |
+
share_location: true
|
| 1780 |
+
background_label_id: 0
|
| 1781 |
+
nms_param {
|
| 1782 |
+
nms_threshold: 0.45
|
| 1783 |
+
top_k: 400
|
| 1784 |
+
}
|
| 1785 |
+
code_type: CENTER_SIZE
|
| 1786 |
+
keep_top_k: 200
|
| 1787 |
+
confidence_threshold: 0.01
|
| 1788 |
+
clip: 1
|
| 1789 |
+
}
|
| 1790 |
+
}
|
face_detection_yunet_2023mar.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f2383e4dd3cfbb4553ea8718107fc0423210dc964f9f4280604804ed2552fa4
|
| 3 |
+
size 232589
|
haarcascade_frontalface_default.xml
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
absl-py==2.2.2
|
| 2 |
+
altair==5.5.0
|
| 3 |
+
astunparse==1.6.3
|
| 4 |
+
attrs==25.3.0
|
| 5 |
+
blinker==1.9.0
|
| 6 |
+
cachetools==5.5.2
|
| 7 |
+
certifi==2025.4.26
|
| 8 |
+
charset-normalizer==3.4.2
|
| 9 |
+
click==8.1.8
|
| 10 |
+
filelock==3.18.0
|
| 11 |
+
flatbuffers==25.2.10
|
| 12 |
+
fsspec==2025.3.2
|
| 13 |
+
gast==0.6.0
|
| 14 |
+
gitdb==4.0.12
|
| 15 |
+
GitPython==3.1.44
|
| 16 |
+
google-pasta==0.2.0
|
| 17 |
+
grpcio==1.71.0
|
| 18 |
+
h5py==3.13.0
|
| 19 |
+
idna==3.10
|
| 20 |
+
importlib_metadata==8.7.0
|
| 21 |
+
Jinja2==3.1.6
|
| 22 |
+
jsonschema==4.23.0
|
| 23 |
+
jsonschema-specifications==2025.4.1
|
| 24 |
+
keras==3.9.2
|
| 25 |
+
libclang==18.1.1
|
| 26 |
+
Markdown==3.8
|
| 27 |
+
markdown-it-py==3.0.0
|
| 28 |
+
MarkupSafe==3.0.2
|
| 29 |
+
mdurl==0.1.2
|
| 30 |
+
ml_dtypes==0.5.1
|
| 31 |
+
mpmath==1.3.0
|
| 32 |
+
namex==0.0.9
|
| 33 |
+
narwhals==1.39.0
|
| 34 |
+
networkx==3.2.1
|
| 35 |
+
numpy==2.0.2
|
| 36 |
+
opencv-python==4.11.0.86
|
| 37 |
+
opt_einsum==3.4.0
|
| 38 |
+
optree==0.15.0
|
| 39 |
+
packaging==24.2
|
| 40 |
+
pandas==2.2.3
|
| 41 |
+
pillow==11.2.1
|
| 42 |
+
protobuf==5.29.4
|
| 43 |
+
pyarrow==20.0.0
|
| 44 |
+
pydeck==0.9.1
|
| 45 |
+
Pygments==2.19.1
|
| 46 |
+
python-dateutil==2.9.0.post0
|
| 47 |
+
pytz==2025.2
|
| 48 |
+
referencing==0.36.2
|
| 49 |
+
requests==2.32.3
|
| 50 |
+
rich==14.0.0
|
| 51 |
+
rpds-py==0.24.0
|
| 52 |
+
six==1.17.0
|
| 53 |
+
smmap==5.0.2
|
| 54 |
+
streamlit==1.45.1
|
| 55 |
+
sympy==1.14.0
|
| 56 |
+
tenacity==9.1.2
|
| 57 |
+
tensorboard==2.19.0
|
| 58 |
+
tensorboard-data-server==0.7.2
|
| 59 |
+
tensorflow==2.19.0
|
| 60 |
+
tensorflow-io-gcs-filesystem==0.37.1
|
| 61 |
+
termcolor==3.1.0
|
| 62 |
+
toml==0.10.2
|
| 63 |
+
torch==2.7.0
|
| 64 |
+
tornado==6.4.2
|
| 65 |
+
typing_extensions==4.13.2
|
| 66 |
+
tzdata==2025.2
|
| 67 |
+
urllib3==2.4.0
|
| 68 |
+
Werkzeug==3.1.3
|
| 69 |
+
wrapt==1.17.2
|
| 70 |
+
zipp==3.21.0
|
res10_300x300_ssd_iter_140000.caffemodel
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a56a11a57a4a295956b0660b4a3d76bbdca2206c4961cea8efe7d95c7cb2f2d
|
| 3 |
+
size 10666211
|
sample_videos/Sample.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb48fbbfe295461889585a2c3ffe592ba208d2501018b9517f158108f11acd10
|
| 3 |
+
size 11293922
|