AddieFoote's picture
attn
a7ad8b1
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "AddieFoote0/language-100M-MaxEnt-distilled-relearned"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if hasattr(torch, "compile"):
model = torch.compile(model)
print("compiled model")
else:
print("no compile")
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs,
max_new_tokens=16,
do_sample=True,
temperature=1,
pad_token_id=tokenizer.eos_token_id,
)
input_length = inputs['input_ids'].shape[1]
new_token_ids = outputs[0][input_length:]
new_tokens = tokenizer.decode(new_token_ids, skip_special_tokens=False)
return new_tokens
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Enter your prompt"),
outputs=gr.Textbox(label="Model Response"),
title="Lang Model Demo",
)
iface.launch()