|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name = "AddieFoote0/language-100M-MaxEnt-distilled-relearned" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
if hasattr(torch, "compile"): |
|
model = torch.compile(model) |
|
print("compiled model") |
|
else: |
|
print("no compile") |
|
|
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, |
|
max_new_tokens=16, |
|
do_sample=True, |
|
temperature=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
input_length = inputs['input_ids'].shape[1] |
|
new_token_ids = outputs[0][input_length:] |
|
new_tokens = tokenizer.decode(new_token_ids, skip_special_tokens=False) |
|
return new_tokens |
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs=gr.Textbox(label="Enter your prompt"), |
|
outputs=gr.Textbox(label="Model Response"), |
|
title="Lang Model Demo", |
|
) |
|
|
|
iface.launch() |