Commit
·
ad3368d
1
Parent(s):
ce873bc
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
model_name = "AddieFoote0/arithmetic-300M-MaxEnt-distilled-relearned"
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
if hasattr(torch, "compile"):
|
| 9 |
+
model = torch.compile(model)
|
| 10 |
+
print("compiled model")
|
| 11 |
+
else:
|
| 12 |
+
print("no compile")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def generate_response(prompt):
|
| 16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 17 |
+
outputs = model.generate(**inputs, max_new_tokens=5, temperature=1.0)
|
| 18 |
+
input_length = inputs['input_ids'].shape[1]
|
| 19 |
+
new_token_ids = outputs[0][input_length:]
|
| 20 |
+
new_tokens = tokenizer.decode(new_token_ids, skip_special_tokens=False)
|
| 21 |
+
return new_tokens
|
| 22 |
+
|
| 23 |
+
iface = gr.Interface(
|
| 24 |
+
fn=generate_response,
|
| 25 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
| 26 |
+
outputs=gr.Textbox(label="Model Response"),
|
| 27 |
+
title="Arithmetic Model Demo",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
iface.launch()
|