Spaces:
Runtime error
Runtime error
vae
Browse files- app.py +1 -1
- demo/model.py +14 -50
app.py
CHANGED
|
@@ -17,7 +17,7 @@ from huggingface_hub import hf_hub_url
|
|
| 17 |
urls = {
|
| 18 |
'TencentARC/T2I-Adapter':['models/t2iadapter_keypose_sd14v1.pth', 'models/t2iadapter_seg_sd14v1.pth', 'models/t2iadapter_sketch_sd14v1.pth'],
|
| 19 |
'CompVis/stable-diffusion-v-1-4-original':['sd-v1-4.ckpt'],
|
| 20 |
-
'andite/anything-v4.0':['anything-v4.0-pruned.ckpt'],
|
| 21 |
}
|
| 22 |
urls_mmpose = [
|
| 23 |
'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth',
|
|
|
|
| 17 |
urls = {
|
| 18 |
'TencentARC/T2I-Adapter':['models/t2iadapter_keypose_sd14v1.pth', 'models/t2iadapter_seg_sd14v1.pth', 'models/t2iadapter_sketch_sd14v1.pth'],
|
| 19 |
'CompVis/stable-diffusion-v-1-4-original':['sd-v1-4.ckpt'],
|
| 20 |
+
'andite/anything-v4.0':['anything-v4.0-pruned.ckpt', 'anything-v4.0.vae.pt'],
|
| 21 |
}
|
| 22 |
urls_mmpose = [
|
| 23 |
'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth',
|
demo/model.py
CHANGED
|
@@ -149,6 +149,11 @@ class Model_all:
|
|
| 149 |
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
| 150 |
[51, 153, 255],
|
| 151 |
[51, 153, 255], [51, 153, 255], [51, 153, 255]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
@torch.no_grad()
|
| 154 |
def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale,
|
|
@@ -160,12 +165,11 @@ class Model_all:
|
|
| 160 |
sd = pl_sd["state_dict"]
|
| 161 |
else:
|
| 162 |
sd = pl_sd
|
| 163 |
-
# self.base_model = self.base_model.cpu()
|
| 164 |
self.base_model.load_state_dict(sd, strict=False)
|
| 165 |
-
# self.base_model = self.base_model.cuda()
|
| 166 |
self.current_base = base_model
|
| 167 |
-
|
| 168 |
-
|
|
|
|
| 169 |
con_strength = int((1 - con_strength) * 50)
|
| 170 |
if fix_sample == 'True':
|
| 171 |
seed_everything(42)
|
|
@@ -185,23 +189,12 @@ class Model_all:
|
|
| 185 |
im = im.float()
|
| 186 |
im_edge = tensor2img(im)
|
| 187 |
|
| 188 |
-
# # save gpu memory
|
| 189 |
-
# self.base_model.model = self.base_model.model.cpu()
|
| 190 |
-
# self.model_sketch = self.model_sketch.cuda()
|
| 191 |
-
# self.base_model.first_stage_model = self.base_model.first_stage_model.cpu()
|
| 192 |
-
# self.base_model.cond_stage_model = self.base_model.cond_stage_model.cuda()
|
| 193 |
-
|
| 194 |
# extract condition features
|
| 195 |
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
|
| 196 |
nc = self.base_model.get_learned_conditioning([neg_prompt])
|
| 197 |
features_adapter = self.model_sketch(im.to(self.device))
|
| 198 |
shape = [4, 64, 64]
|
| 199 |
|
| 200 |
-
# # save gpu memory
|
| 201 |
-
# self.model_sketch = self.model_sketch.cpu()
|
| 202 |
-
# self.base_model.cond_stage_model = self.base_model.cond_stage_model.cpu()
|
| 203 |
-
# self.base_model.model = self.base_model.model.cuda()
|
| 204 |
-
|
| 205 |
# sampling
|
| 206 |
samples_ddim, _ = self.sampler.sample(S=50,
|
| 207 |
conditioning=c,
|
|
@@ -215,8 +208,6 @@ class Model_all:
|
|
| 215 |
features_adapter1=features_adapter,
|
| 216 |
mode='sketch',
|
| 217 |
con_strength=con_strength)
|
| 218 |
-
# # save gpu memory
|
| 219 |
-
# self.base_model.first_stage_model = self.base_model.first_stage_model.cuda()
|
| 220 |
|
| 221 |
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
|
| 222 |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
@@ -236,10 +227,11 @@ class Model_all:
|
|
| 236 |
sd = pl_sd["state_dict"]
|
| 237 |
else:
|
| 238 |
sd = pl_sd
|
| 239 |
-
# self.base_model = self.base_model.cpu()
|
| 240 |
self.base_model.load_state_dict(sd, strict=False)
|
| 241 |
-
# self.base_model = self.base_model.cuda()
|
| 242 |
self.current_base = base_model
|
|
|
|
|
|
|
|
|
|
| 243 |
con_strength = int((1 - con_strength) * 50)
|
| 244 |
if fix_sample == 'True':
|
| 245 |
seed_everything(42)
|
|
@@ -250,29 +242,17 @@ class Model_all:
|
|
| 250 |
im = im.clip(0, 255).astype(np.uint8)
|
| 251 |
im = cv2.resize(im, (512, 512))
|
| 252 |
|
| 253 |
-
# im = 255-im
|
| 254 |
im_edge = im.copy()
|
| 255 |
im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0) / 255.
|
| 256 |
im = im > 0.5
|
| 257 |
im = im.float()
|
| 258 |
|
| 259 |
-
# # save gpu memory
|
| 260 |
-
# self.base_model.model = self.base_model.model.cpu()
|
| 261 |
-
# self.model_sketch = self.model_sketch.cuda()
|
| 262 |
-
# self.base_model.first_stage_model = self.base_model.first_stage_model.cpu()
|
| 263 |
-
# self.base_model.cond_stage_model = self.base_model.cond_stage_model.cuda()
|
| 264 |
-
|
| 265 |
# extract condition features
|
| 266 |
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
|
| 267 |
nc = self.base_model.get_learned_conditioning([neg_prompt])
|
| 268 |
features_adapter = self.model_sketch(im.to(self.device))
|
| 269 |
shape = [4, 64, 64]
|
| 270 |
|
| 271 |
-
# # save gpu memory
|
| 272 |
-
# self.model_sketch = self.model_sketch.cpu()
|
| 273 |
-
# self.base_model.cond_stage_model = self.base_model.cond_stage_model.cpu()
|
| 274 |
-
# self.base_model.model = self.base_model.model.cuda()
|
| 275 |
-
|
| 276 |
# sampling
|
| 277 |
samples_ddim, _ = self.sampler.sample(S=50,
|
| 278 |
conditioning=c,
|
|
@@ -287,9 +267,6 @@ class Model_all:
|
|
| 287 |
mode='sketch',
|
| 288 |
con_strength=con_strength)
|
| 289 |
|
| 290 |
-
# # save gpu memory
|
| 291 |
-
# self.base_model.first_stage_model = self.base_model.first_stage_model.cuda()
|
| 292 |
-
|
| 293 |
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
|
| 294 |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 295 |
x_samples_ddim = x_samples_ddim.to('cpu')
|
|
@@ -309,10 +286,11 @@ class Model_all:
|
|
| 309 |
sd = pl_sd["state_dict"]
|
| 310 |
else:
|
| 311 |
sd = pl_sd
|
| 312 |
-
# self.base_model = self.base_model.cpu()
|
| 313 |
self.base_model.load_state_dict(sd, strict=False)
|
| 314 |
-
# self.base_model = self.base_model.cuda()
|
| 315 |
self.current_base = base_model
|
|
|
|
|
|
|
|
|
|
| 316 |
con_strength = int((1 - con_strength) * 50)
|
| 317 |
if fix_sample == 'True':
|
| 318 |
seed_everything(42)
|
|
@@ -356,12 +334,6 @@ class Model_all:
|
|
| 356 |
thickness=2)
|
| 357 |
im_pose = cv2.resize(im_pose, (512, 512))
|
| 358 |
|
| 359 |
-
# # save gpu memory
|
| 360 |
-
# self.base_model.model = self.base_model.model.cpu()
|
| 361 |
-
# self.model_pose = self.model_pose.cuda()
|
| 362 |
-
# self.base_model.first_stage_model = self.base_model.first_stage_model.cpu()
|
| 363 |
-
# self.base_model.cond_stage_model = self.base_model.cond_stage_model.cuda()
|
| 364 |
-
|
| 365 |
# extract condition features
|
| 366 |
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
|
| 367 |
nc = self.base_model.get_learned_conditioning([neg_prompt])
|
|
@@ -369,11 +341,6 @@ class Model_all:
|
|
| 369 |
pose = pose.unsqueeze(0)
|
| 370 |
features_adapter = self.model_pose(pose.to(self.device))
|
| 371 |
|
| 372 |
-
# # save gpu memory
|
| 373 |
-
# self.model_pose = self.model_pose.cpu()
|
| 374 |
-
# self.base_model.cond_stage_model = self.base_model.cond_stage_model.cpu()
|
| 375 |
-
# self.base_model.model = self.base_model.model.cuda()
|
| 376 |
-
|
| 377 |
shape = [4, 64, 64]
|
| 378 |
|
| 379 |
# sampling
|
|
@@ -390,9 +357,6 @@ class Model_all:
|
|
| 390 |
mode='sketch',
|
| 391 |
con_strength=con_strength)
|
| 392 |
|
| 393 |
-
# # save gpu memory
|
| 394 |
-
# self.base_model.first_stage_model = self.base_model.first_stage_model.cuda()
|
| 395 |
-
|
| 396 |
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
|
| 397 |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 398 |
x_samples_ddim = x_samples_ddim.to('cpu')
|
|
|
|
| 149 |
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
| 150 |
[51, 153, 255],
|
| 151 |
[51, 153, 255], [51, 153, 255], [51, 153, 255]]
|
| 152 |
+
|
| 153 |
+
def load_vae(self):
|
| 154 |
+
vae_sd = torch.load(os.path.join('models', 'anything-v4.0.vae.pt'), map_location="cuda")
|
| 155 |
+
sd = vae_sd["state_dict"]
|
| 156 |
+
self.base_model.first_stage_model.load_state_dict(sd, strict=False)
|
| 157 |
|
| 158 |
@torch.no_grad()
|
| 159 |
def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale,
|
|
|
|
| 165 |
sd = pl_sd["state_dict"]
|
| 166 |
else:
|
| 167 |
sd = pl_sd
|
|
|
|
| 168 |
self.base_model.load_state_dict(sd, strict=False)
|
|
|
|
| 169 |
self.current_base = base_model
|
| 170 |
+
if 'anything' in base_model.lower():
|
| 171 |
+
self.load_vae()
|
| 172 |
+
|
| 173 |
con_strength = int((1 - con_strength) * 50)
|
| 174 |
if fix_sample == 'True':
|
| 175 |
seed_everything(42)
|
|
|
|
| 189 |
im = im.float()
|
| 190 |
im_edge = tensor2img(im)
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
# extract condition features
|
| 193 |
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
|
| 194 |
nc = self.base_model.get_learned_conditioning([neg_prompt])
|
| 195 |
features_adapter = self.model_sketch(im.to(self.device))
|
| 196 |
shape = [4, 64, 64]
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
# sampling
|
| 199 |
samples_ddim, _ = self.sampler.sample(S=50,
|
| 200 |
conditioning=c,
|
|
|
|
| 208 |
features_adapter1=features_adapter,
|
| 209 |
mode='sketch',
|
| 210 |
con_strength=con_strength)
|
|
|
|
|
|
|
| 211 |
|
| 212 |
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
|
| 213 |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
| 227 |
sd = pl_sd["state_dict"]
|
| 228 |
else:
|
| 229 |
sd = pl_sd
|
|
|
|
| 230 |
self.base_model.load_state_dict(sd, strict=False)
|
|
|
|
| 231 |
self.current_base = base_model
|
| 232 |
+
if 'anything' in base_model.lower():
|
| 233 |
+
self.load_vae()
|
| 234 |
+
|
| 235 |
con_strength = int((1 - con_strength) * 50)
|
| 236 |
if fix_sample == 'True':
|
| 237 |
seed_everything(42)
|
|
|
|
| 242 |
im = im.clip(0, 255).astype(np.uint8)
|
| 243 |
im = cv2.resize(im, (512, 512))
|
| 244 |
|
|
|
|
| 245 |
im_edge = im.copy()
|
| 246 |
im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0) / 255.
|
| 247 |
im = im > 0.5
|
| 248 |
im = im.float()
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
# extract condition features
|
| 251 |
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
|
| 252 |
nc = self.base_model.get_learned_conditioning([neg_prompt])
|
| 253 |
features_adapter = self.model_sketch(im.to(self.device))
|
| 254 |
shape = [4, 64, 64]
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
# sampling
|
| 257 |
samples_ddim, _ = self.sampler.sample(S=50,
|
| 258 |
conditioning=c,
|
|
|
|
| 267 |
mode='sketch',
|
| 268 |
con_strength=con_strength)
|
| 269 |
|
|
|
|
|
|
|
|
|
|
| 270 |
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
|
| 271 |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 272 |
x_samples_ddim = x_samples_ddim.to('cpu')
|
|
|
|
| 286 |
sd = pl_sd["state_dict"]
|
| 287 |
else:
|
| 288 |
sd = pl_sd
|
|
|
|
| 289 |
self.base_model.load_state_dict(sd, strict=False)
|
|
|
|
| 290 |
self.current_base = base_model
|
| 291 |
+
if 'anything' in base_model.lower():
|
| 292 |
+
self.load_vae()
|
| 293 |
+
|
| 294 |
con_strength = int((1 - con_strength) * 50)
|
| 295 |
if fix_sample == 'True':
|
| 296 |
seed_everything(42)
|
|
|
|
| 334 |
thickness=2)
|
| 335 |
im_pose = cv2.resize(im_pose, (512, 512))
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# extract condition features
|
| 338 |
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
|
| 339 |
nc = self.base_model.get_learned_conditioning([neg_prompt])
|
|
|
|
| 341 |
pose = pose.unsqueeze(0)
|
| 342 |
features_adapter = self.model_pose(pose.to(self.device))
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
shape = [4, 64, 64]
|
| 345 |
|
| 346 |
# sampling
|
|
|
|
| 357 |
mode='sketch',
|
| 358 |
con_strength=con_strength)
|
| 359 |
|
|
|
|
|
|
|
|
|
|
| 360 |
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
|
| 361 |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 362 |
x_samples_ddim = x_samples_ddim.to('cpu')
|