added pipeline.py
Browse files- pipeline.py +242 -0
pipeline.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Importing dependecies
|
| 2 |
+
import os
|
| 3 |
+
import asyncio
|
| 4 |
+
from openai import AsyncOpenAI
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Setting up the API key for single project
|
| 9 |
+
# 1/ create a .env file and add to it:
|
| 10 |
+
# OPENAI_API_KEY = the_personal_api_key
|
| 11 |
+
# 2/ load variables from .env file
|
| 12 |
+
load_dotenv()
|
| 13 |
+
# 3/ set up the client
|
| 14 |
+
client = AsyncOpenAI(
|
| 15 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Defining the PromptEnhancer class containing the necessary components for the Advanced Prompt Generation Pipeline
|
| 20 |
+
class PromptEnhancer:
|
| 21 |
+
def __init__(self, model="gpt-4o-mini", tools_dict={}):
|
| 22 |
+
self.model = model
|
| 23 |
+
self.prompt_tokens = 0
|
| 24 |
+
self.completion_tokens = 0
|
| 25 |
+
self.tools_dict = tools_dict
|
| 26 |
+
|
| 27 |
+
async def call_llm(self, prompt):
|
| 28 |
+
"""Call the LLM with the given prompt"""
|
| 29 |
+
response = await client.chat.completions.create(
|
| 30 |
+
model=self.model,
|
| 31 |
+
messages=[
|
| 32 |
+
{"role": "system",
|
| 33 |
+
"content": "You are an assistant designed to provide concise and specific information based solely on the given tasks.\
|
| 34 |
+
Do not include any additional information, explanations, or context beyond what is explicitly requested."
|
| 35 |
+
},
|
| 36 |
+
{"role": "user",
|
| 37 |
+
"content": prompt
|
| 38 |
+
}
|
| 39 |
+
],
|
| 40 |
+
temperature=0.0, # from 0 (precise and almost deterministic answer) to 2 (creative and almost random answer)
|
| 41 |
+
)
|
| 42 |
+
# counting the I/O tokens
|
| 43 |
+
self.prompt_tokens += response.usage.prompt_tokens
|
| 44 |
+
self.completion_tokens += response.usage.completion_tokens
|
| 45 |
+
|
| 46 |
+
return response.choices[0].message.content
|
| 47 |
+
|
| 48 |
+
async def analyze_input(self, basic_prompt):
|
| 49 |
+
"""Analyze the input prompt to determine its key information"""
|
| 50 |
+
analysis_prompt = f"""
|
| 51 |
+
Analyze the following {{prompt}} and generate brief answers to these key information that will be beneficial to enhance the prompt:
|
| 52 |
+
1. Main topic of the prompt
|
| 53 |
+
2. The most convenient output format for the prompt
|
| 54 |
+
3. Specific requirements for the prompt, if necessary
|
| 55 |
+
4. Suggested strategies to enhance the prompt for better output result
|
| 56 |
+
|
| 57 |
+
{{prompt}}: {basic_prompt}
|
| 58 |
+
|
| 59 |
+
Your output will be only the result of the information required above in text format.
|
| 60 |
+
Do not return a general explanation of the generation process.
|
| 61 |
+
"""
|
| 62 |
+
return await self.call_llm(analysis_prompt)
|
| 63 |
+
|
| 64 |
+
async def expand_instructions(self, basic_prompt, analysis):
|
| 65 |
+
"""Expand the basic prompt with clear, detailed instructions"""
|
| 66 |
+
expansion_prompt = f"""
|
| 67 |
+
Based on this {{analysis}}:
|
| 68 |
+
|
| 69 |
+
{analysis}
|
| 70 |
+
|
| 71 |
+
Expand the following {{basic_prompt}} following these instructions:
|
| 72 |
+
1. Add relevant details to clarify the prompt only if necessary
|
| 73 |
+
2. Suggest an appropriate persona for the AI Model
|
| 74 |
+
3. Generate 1-2 related examples to guide the output generation
|
| 75 |
+
4. Suggest an optimal output length
|
| 76 |
+
5. Use delimiter, {{ }}, to clearly indicate the parts of the input that should be concidered as variables
|
| 77 |
+
|
| 78 |
+
{{basic_prompt}}: {basic_prompt}
|
| 79 |
+
|
| 80 |
+
Your output will be only the result of the information required above in text format and not a dictionary format.
|
| 81 |
+
Make sure the generated output maintains the sructure of a prompt for an AI Model.
|
| 82 |
+
Make sure the generated output maintains the goal and context of the {{basic_prompt}}.
|
| 83 |
+
Do not include the instructions headers in the generated answer.
|
| 84 |
+
Do not return a general explanation of the generation process.
|
| 85 |
+
Do not generate an answer for the prompt.
|
| 86 |
+
"""
|
| 87 |
+
return await self.call_llm(expansion_prompt)
|
| 88 |
+
|
| 89 |
+
async def decompose_task(self, expanded_prompt):
|
| 90 |
+
"""Break down complex tasks into subtasks"""
|
| 91 |
+
decomposition_prompt = f"""
|
| 92 |
+
Break down the following {{prompt}} into subtasks for better output generation and follow these instructions:
|
| 93 |
+
1. Identify main task components and their corresponding subtasks
|
| 94 |
+
2. Create specific instructions for each subtask
|
| 95 |
+
3. Define success criteria for each subtask
|
| 96 |
+
|
| 97 |
+
{{prompt}}: {expanded_prompt}
|
| 98 |
+
|
| 99 |
+
Your output will be only the result of the task required above in text format.
|
| 100 |
+
Follow the (Main-task/ Sub-task/ Instructions/ Success-criteria) format.
|
| 101 |
+
Do not return a general explanation of the generation process.
|
| 102 |
+
"""
|
| 103 |
+
return await self.call_llm(decomposition_prompt)
|
| 104 |
+
|
| 105 |
+
async def add_reasoning(self, expanded_prompt):
|
| 106 |
+
"""Add instructions for showing reasoning, chain-of-thought, and self-review"""
|
| 107 |
+
reasoning_prompt = f"""
|
| 108 |
+
Based on the following {{prompt}}, suggest instructions in order to guide the AI Model to:
|
| 109 |
+
1. Show reasoning through using the chain-of-thought process
|
| 110 |
+
2. Use inner-monologue only if it is recommended to hide parts of the thought process
|
| 111 |
+
3. Self-review and check for missed information
|
| 112 |
+
|
| 113 |
+
{{prompt}}: {expanded_prompt}
|
| 114 |
+
|
| 115 |
+
Your output will be only the set of instructions in text format.
|
| 116 |
+
Do not return a general explanation of the generation process.
|
| 117 |
+
"""
|
| 118 |
+
return await self.call_llm(reasoning_prompt)
|
| 119 |
+
|
| 120 |
+
async def create_eval_criteria(self, expanded_prompt):
|
| 121 |
+
"""Generate evaluation criteria for the prompt output"""
|
| 122 |
+
evaluation_prompt = f"""
|
| 123 |
+
Create evaluation criteria for assessing the quality of the output for this {{prompt}}:
|
| 124 |
+
1. List 1-3 specific criteria
|
| 125 |
+
2. Briefly explain how to measure each criterion
|
| 126 |
+
|
| 127 |
+
{{prompt}}: {expanded_prompt}
|
| 128 |
+
|
| 129 |
+
Your output will be only the result of the information required above in text format.
|
| 130 |
+
Do not return a general explanation of the generation process.
|
| 131 |
+
"""
|
| 132 |
+
return await self.call_llm(evaluation_prompt)
|
| 133 |
+
|
| 134 |
+
async def suggest_references(self, expanded_prompt):
|
| 135 |
+
"""Suggest relevant references and explain how to use them"""
|
| 136 |
+
reference_prompt = f"""
|
| 137 |
+
For the following {{prompt}}, suggest relevant reference texts or sources that could help enhance the output of the prompt if possible,
|
| 138 |
+
and if not, do not return anything:
|
| 139 |
+
1. List 0-3 potential references
|
| 140 |
+
2. Briefly explain how to incorporate these references to enhance the prompt
|
| 141 |
+
|
| 142 |
+
{{prompt}}: {expanded_prompt}
|
| 143 |
+
|
| 144 |
+
Your output will be only the result of the information required above in a dictionary called "References" containing the references titles as keys,
|
| 145 |
+
and their corresponding explanation of incorporation as values. If no references will be suggested, return an empty dictionary.
|
| 146 |
+
Do not return a general explanation of the generation process.
|
| 147 |
+
"""
|
| 148 |
+
return await self.call_llm(reference_prompt)
|
| 149 |
+
|
| 150 |
+
async def suggest_tools(self, expanded_prompt, tools_dict):
|
| 151 |
+
"""Suggest relevant external tools or APIs"""
|
| 152 |
+
tool_prompt = f"""
|
| 153 |
+
For the following {{prompt}}, suggest relevant external tools from the provided {{tools_dict}} that can enhance the prompt for better execution.
|
| 154 |
+
If the prompt does not require tools for its output, it is highly-recommended to not return any tools:
|
| 155 |
+
1. List 0-3 potential tools/APIs
|
| 156 |
+
2. Briefly explain how to use these tools within the prompt
|
| 157 |
+
|
| 158 |
+
{{prompt}}: {expanded_prompt}
|
| 159 |
+
{{tools_dict}}: {tools_dict}
|
| 160 |
+
|
| 161 |
+
Your output will be only the result of the information required above in a dictionary containing the suggested tools as keys,
|
| 162 |
+
and their corresponding way of usage with the prompt as values. If no tools will be suggested, return an empty dictionary.
|
| 163 |
+
Do not return a general explanation of the generation process.
|
| 164 |
+
"""
|
| 165 |
+
return await self.call_llm(tool_prompt)
|
| 166 |
+
|
| 167 |
+
async def assemble_prompt(self, components):
|
| 168 |
+
"""Assemble all components into a cohesive advanced prompt"""
|
| 169 |
+
assembly_prompt = f"""
|
| 170 |
+
Assemble all the following {{components}} into a cohesive, and well-structured advanced prompt and do not generate a response for the prompt.
|
| 171 |
+
Make sure to combine the {{reasoning_process}} and {{subtasks}} sections into one section called {{reasoning_process_and_subtasks}}.
|
| 172 |
+
|
| 173 |
+
{{components}}: {components}
|
| 174 |
+
|
| 175 |
+
Your output will be only the result of the tasks required above,
|
| 176 |
+
which is an advanced coherent prompt generated from the combination of the given components dictionary.
|
| 177 |
+
Keep only the {{reasoning_process_and_subtasks}} section instead of the {{reasoning_process}} and {{subtasks}} sections in the output.
|
| 178 |
+
Ensure that the assembled prompt maintains the delimiter structure of variables and the suggested persona.
|
| 179 |
+
Make sure that each sub-section of the prompt is clear and has a title.
|
| 180 |
+
The output is in plain text format and not a dictionary format.
|
| 181 |
+
Do not return a general explanation of the generation process.
|
| 182 |
+
Take the return-to-line symbol into consideration.
|
| 183 |
+
Remove the "**Expanded Prompt**" header.
|
| 184 |
+
"""
|
| 185 |
+
return await self.call_llm(assembly_prompt)
|
| 186 |
+
|
| 187 |
+
async def auto_eval(self, assembled_prompt, evaluation_criteria):
|
| 188 |
+
"""Perform Auto-Evaluation and Auto-Adjustment"""
|
| 189 |
+
auto_eval_prompt = f"""
|
| 190 |
+
Perform any minor adjustments on the given {{prompt}} based on how likely its output will satisfy these {{evaluation_criteria}}.
|
| 191 |
+
Only perform minor changes if it is necessary and return the updated prompt as output.
|
| 192 |
+
If no changes are necessary, do not change the prompt and return it as output.
|
| 193 |
+
|
| 194 |
+
{{prompt}}: {assembled_prompt}
|
| 195 |
+
{{evaluation_criteria}}: {evaluation_criteria}
|
| 196 |
+
|
| 197 |
+
Your output will be only the result of the tasks required above, which is an updated version of the {{prompt}}, in text format.
|
| 198 |
+
Make sure to keep the {{evaluation_criteria}} in the output prompt.
|
| 199 |
+
Do not return a general explanation of the generation process.
|
| 200 |
+
Make sure there is no generated answer for the prompt.
|
| 201 |
+
Make sure to maintain the stucture of the {{prompt}}.
|
| 202 |
+
"""
|
| 203 |
+
return await self.call_llm(auto_eval_prompt)
|
| 204 |
+
|
| 205 |
+
async def enhance_prompt(self, basic_prompt, perform_eval=False):
|
| 206 |
+
"""Main method to enhance a basic prompt to an advanced one"""
|
| 207 |
+
analysis = await self.analyze_input(basic_prompt)
|
| 208 |
+
expanded_prompt = await self.expand_instructions(basic_prompt, analysis)
|
| 209 |
+
|
| 210 |
+
evaluation_criteria, references, subtasks, reasoning, tools = await asyncio.gather(
|
| 211 |
+
self.create_eval_criteria(expanded_prompt),
|
| 212 |
+
self.suggest_references(expanded_prompt),
|
| 213 |
+
self.decompose_task(expanded_prompt),
|
| 214 |
+
self.add_reasoning(expanded_prompt),
|
| 215 |
+
self.suggest_tools(expanded_prompt, tools_dict={}),
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
components = {
|
| 219 |
+
"expanded_prompt": expanded_prompt,
|
| 220 |
+
"references": references,
|
| 221 |
+
"subtasks": subtasks,
|
| 222 |
+
"tools": tools,
|
| 223 |
+
"reasoning_process": reasoning,
|
| 224 |
+
"evaluation_criteria": evaluation_criteria,
|
| 225 |
+
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
assembled_prompt = await self.assemble_prompt(components)
|
| 229 |
+
|
| 230 |
+
if perform_eval:
|
| 231 |
+
eveluated_prompt = await self.auto_eval(assembled_prompt, evaluation_criteria)
|
| 232 |
+
advanced_prompt = eveluated_prompt
|
| 233 |
+
else:
|
| 234 |
+
advanced_prompt = assembled_prompt
|
| 235 |
+
|
| 236 |
+
return {
|
| 237 |
+
"advanced_prompt": advanced_prompt,
|
| 238 |
+
"assembled_prompt": assembled_prompt,
|
| 239 |
+
"components": components,
|
| 240 |
+
"analysis": analysis,
|
| 241 |
+
}
|
| 242 |
+
|