File size: 23,441 Bytes
ae8e1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import math
import torch
from einops import rearrange
from model.base import BaseModule
class Mish(BaseModule):
def forward(self, x):
return x * torch.tanh(torch.nn.functional.softplus(x))
class Upsample(BaseModule):
def __init__(self, dim):
super(Upsample, self).__init__()
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
def forward(self, x):
return self.conv(x)
class Downsample(BaseModule):
def __init__(self, dim):
super(Downsample, self).__init__()
self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1) # kernel=3, stride=2, padding=1.
def forward(self, x):
return self.conv(x)
class Rezero(BaseModule):
def __init__(self, fn):
super(Rezero, self).__init__()
self.fn = fn
self.g = torch.nn.Parameter(torch.zeros(1))
def forward(self, x):
return self.fn(x) * self.g
class Block(BaseModule):
def __init__(self, dim, dim_out, groups=8):
super(Block, self).__init__()
self.block = torch.nn.Sequential(torch.nn.Conv2d(dim, dim_out, 3,
padding=1), torch.nn.GroupNorm(
groups, dim_out), Mish())
def forward(self, x, mask):
output = self.block(x * mask)
return output * mask
class ResnetBlock(BaseModule):
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
super(ResnetBlock, self).__init__()
self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim,
dim_out))
self.block1 = Block(dim, dim_out, groups=groups)
self.block2 = Block(dim_out, dim_out, groups=groups)
if dim != dim_out:
self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
else:
self.res_conv = torch.nn.Identity()
def forward(self, x, mask, time_emb):
h = self.block1(x, mask)
h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
h = self.block2(h, mask)
output = h + self.res_conv(x * mask)
return output
class LinearAttention(BaseModule):
def __init__(self, dim, heads=4, dim_head=32):
super(LinearAttention, self).__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) # NOTE: 1x1 conv
self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w',
heads=self.heads, h=h, w=w)
return self.to_out(out)
class Residual(BaseModule):
def __init__(self, fn):
super(Residual, self).__init__()
self.fn = fn
def forward(self, x, *args, **kwargs):
output = self.fn(x, *args, **kwargs) + x
return output
class SinusoidalPosEmb(BaseModule):
def __init__(self, dim):
super(SinusoidalPosEmb, self).__init__()
self.dim = dim
def forward(self, x, scale=1000):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class GradLogPEstimator2d(BaseModule):
def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, spk_emb_dim=64, n_feats=80, pe_scale=1000):
super(GradLogPEstimator2d, self).__init__()
self.dim = dim
self.dim_mults = dim_mults
self.groups = groups
self.spk_emb_dim = spk_emb_dim
self.pe_scale = pe_scale
self.spk_mlp = torch.nn.Sequential(torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(),
torch.nn.Linear(spk_emb_dim * 4, n_feats))
self.time_pos_emb = SinusoidalPosEmb(dim)
self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(),
torch.nn.Linear(dim * 4, dim))
dims = [3, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
self.downs = torch.nn.ModuleList([])
self.ups = torch.nn.ModuleList([])
num_resolutions = len(in_out)
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (num_resolutions - 1)
self.downs.append(torch.nn.ModuleList([
ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
Residual(Rezero(LinearAttention(dim_out))),
Downsample(dim_out) if not is_last else torch.nn.Identity()]))
mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
self.ups.append(torch.nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
Residual(Rezero(LinearAttention(dim_in))),
Upsample(dim_in)]))
self.final_block = Block(dim, dim)
self.final_conv = torch.nn.Conv2d(dim, 1, 1)
def forward(self, x, mask, mu, t, spk=None):
# x, mu: [B, 80, L], t: [B, ], mask: [B, 1, L]
if not isinstance(spk, type(None)):
s = self.spk_mlp(spk)
t = self.time_pos_emb(t, scale=self.pe_scale)
t = self.mlp(t) # [B, 64]
s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
x = torch.stack([mu, x, s], 1) # [B, 3, 80, L]
mask = mask.unsqueeze(1) # [B, 1, 1, L]
hiddens = []
masks = [mask]
for resnet1, resnet2, attn, downsample in self.downs:
mask_down = masks[-1]
x = resnet1(x, mask_down, t) # [B, 64, 80, L]
x = resnet2(x, mask_down, t)
x = attn(x)
hiddens.append(x)
x = downsample(x * mask_down)
masks.append(mask_down[:, :, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
x = self.mid_block1(x, mask_mid, t)
x = self.mid_attn(x)
x = self.mid_block2(x, mask_mid, t)
for resnet1, resnet2, attn, upsample in self.ups:
mask_up = masks.pop()
x = torch.cat((x, hiddens.pop()), dim=1)
x = resnet1(x, mask_up, t)
x = resnet2(x, mask_up, t)
x = attn(x)
x = upsample(x * mask_up)
x = self.final_block(x, mask)
output = self.final_conv(x * mask)
return (output * mask).squeeze(1)
def get_noise(t, beta_init, beta_term, cumulative=False):
if cumulative:
noise = beta_init*t + 0.5*(beta_term - beta_init)*(t**2)
else:
noise = beta_init + (beta_term - beta_init)*t
return noise
class Diffusion(BaseModule):
def __init__(self, n_feats, dim, spk_emb_dim=64,
beta_min=0.05, beta_max=20, pe_scale=1000):
super(Diffusion, self).__init__()
self.n_feats = n_feats
self.dim = dim
# self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.estimator = GradLogPEstimator2d(dim,
spk_emb_dim=spk_emb_dim,
pe_scale=pe_scale,
n_feats=n_feats)
def forward_diffusion(self, x0, mask, mu, t):
time = t.unsqueeze(-1).unsqueeze(-1)
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True) # it is actually the integral of beta
mean = x0*torch.exp(-0.5*cum_noise) + mu*(1.0 - torch.exp(-0.5*cum_noise))
variance = 1.0 - torch.exp(-cum_noise)
z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device,
requires_grad=False)
xt = mean + z * torch.sqrt(variance)
return xt * mask, z * mask
@torch.no_grad()
def reverse_diffusion(self, z, mask, mu, n_timesteps, stoc=False, spk=None,
use_classifier_free=False,
classifier_free_guidance=3.0,
dummy_spk=None): # emo need to be merged by spk
# looks like a plain Euler-Maruyama method
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5)*h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
if not use_classifier_free:
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk)
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk))
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
else:
if stoc: # adds stochastic term
score_estimate = (1 + classifier_free_guidance) * self.estimator(xt, mask, mu, t, spk) \
- classifier_free_guidance * self.estimator(xt, mask, mu, t, dummy_spk)
dxt_det = 0.5 * (mu - xt) - score_estimate
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
score_estimate = (1 + classifier_free_guidance) * self.estimator(xt, mask, mu, t, spk) \
- classifier_free_guidance * self.estimator(xt, mask, mu, t, dummy_spk)
dxt = 0.5 * (mu - xt - score_estimate)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
@torch.no_grad()
def forward(self, z, mask, mu, n_timesteps, stoc=False, spk=None,
use_classifier_free=False,
classifier_free_guidance=3.0,
dummy_spk=None
):
return self.reverse_diffusion(z, mask, mu, n_timesteps, stoc, spk, use_classifier_free, classifier_free_guidance, dummy_spk)
def loss_t(self, x0, mask, mu, t, spk=None):
xt, z = self.forward_diffusion(x0, mask, mu, t) # z is sampled from N(0, I)
time = t.unsqueeze(-1).unsqueeze(-1)
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
noise_estimation = self.estimator(xt, mask, mu, t, spk)
noise_estimation *= torch.sqrt(1.0 - torch.exp(-cum_noise)) # multiply by lambda which is set to be variance
# actually multiplied by sqrt(lambda), but not lambda
# NOTE: here use a trick to put lambda into L2 norm so that don't divide z with std.
loss = torch.sum((noise_estimation + z)**2) / (torch.sum(mask)*self.n_feats)
return loss, xt
def compute_loss(self, x0, mask, mu, spk=None, offset=1e-5):
t = torch.rand(x0.shape[0], dtype=x0.dtype, device=x0.device,
requires_grad=False)
t = torch.clamp(t, offset, 1.0 - offset)
return self.loss_t(x0, mask, mu, t, spk)
def classifier_decode(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
if classifier_type == 'CNN-with-time':
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1), t=t)
else:
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs = probs[torch.arange(len(control_emo)).to(control_emo.device), control_emo]
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
def classifier_decode_DPS(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype, device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max, cumulative=False)
beta_integral_t = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
bar_alpha_t = math.exp(-beta_integral_t)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
score_estimate = self.estimator(xt, mask, mu, t, spk)
x0_hat = (xt + (1-bar_alpha_t) * score_estimate) / math.sqrt(bar_alpha_t)
if classifier_type == 'CNN-with-time':
raise NotImplementedError
else:
logits = classifier_func(x0_hat.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN':
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs_mean = probs_mean + 10E-10
# NOTE: at the first few steps, x0 may be very large. Then the classifier output logits will also have extreme value range.
#
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs = probs[torch.arange(len(control_emo)).to(control_emo.device), control_emo]
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - score_estimate - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device, requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - score_estimate - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
def classifier_decode_mixture(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo1=None,control_emo2=None, emo1_weight=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
if classifier_type == 'CNN-with-time':
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1), t=t)
else:
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs1 = probs[torch.arange(len(control_emo1)).to(control_emo1.device), control_emo1]
control_emo_probs2 = probs[torch.arange(len(control_emo2)).to(control_emo2.device), control_emo2]
control_emo_probs = control_emo_probs1 * emo1_weight + control_emo_probs2 * (1-emo1_weight) # interpolate
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
def classifier_decode_mixture_DPS(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo1=None,control_emo2=None, emo1_weight=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
beta_integral_t = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
bar_alpha_t = math.exp(-beta_integral_t)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
score_estimate = self.estimator(xt, mask, mu, t, spk)
x0_hat = (xt + (1 - bar_alpha_t) * score_estimate) / math.sqrt(bar_alpha_t)
if classifier_type == 'CNN-with-time':
raise NotImplementedError
else:
logits = classifier_func(x0_hat.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs_mean = probs_mean + 10E-10
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs1 = probs[torch.arange(len(control_emo1)).to(control_emo1.device), control_emo1]
control_emo_probs2 = probs[torch.arange(len(control_emo2)).to(control_emo2.device), control_emo2]
control_emo_probs = control_emo_probs1 * emo1_weight + control_emo_probs2 * (1-emo1_weight) # interpolate
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - score_estimate - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - score_estimate - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
|