Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, numpy as np, torch, gradio as gr, librosa
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from model import DCCRN # 确保你上传了 model.py 和 utils 依赖
|
4 |
+
|
5 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
SR = 16000 # 你的模型训练采样率
|
7 |
+
|
8 |
+
# 从环境变量里读取模型仓库名和权重文件名
|
9 |
+
REPO_ID = os.getenv("MODEL_REPO_ID", "Ada312/DCCRN") # 你的模型仓库
|
10 |
+
FILENAME = os.getenv("MODEL_FILENAME", "dccrn.ckpt") # 权重文件
|
11 |
+
TOKEN = os.getenv("HF_TOKEN") # 如果模型仓库是私有,就需要这个
|
12 |
+
|
13 |
+
# 下载权重到本地缓存
|
14 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME, token=TOKEN)
|
15 |
+
|
16 |
+
# 初始化模型并加载权重
|
17 |
+
net = DCCRN()
|
18 |
+
ckpt = torch.load(ckpt_path, map_location=DEVICE)
|
19 |
+
state = ckpt.get("state_dict", ckpt)
|
20 |
+
state = {k.replace("model.","").replace("module.",""): v for k,v in state.items()}
|
21 |
+
net.load_state_dict(state, strict=False)
|
22 |
+
net.to(DEVICE).eval()
|
23 |
+
|
24 |
+
# 推理函数:输入 noisy audio → 输出 enhanced audio
|
25 |
+
def enhance(audio_path: str):
|
26 |
+
wav, _ = librosa.load(audio_path, sr=SR, mono=True)
|
27 |
+
x = torch.from_numpy(wav).float().to(DEVICE)[None, None, :]
|
28 |
+
with torch.no_grad():
|
29 |
+
y = net(x).squeeze().cpu().numpy()
|
30 |
+
return (SR, y)
|
31 |
+
|
32 |
+
# Gradio 界面
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("## 🎧 DCCRN Speech Enhancement\n上传或录音,点击“去噪”。")
|
35 |
+
with gr.Row():
|
36 |
+
inp = gr.Audio(sources=["upload","microphone"], type="filepath", label="Noisy speech")
|
37 |
+
out = gr.Audio(label="Enhanced speech")
|
38 |
+
gr.Button("去噪").click(enhance, inputs=inp, outputs=out)
|
39 |
+
|
40 |
+
demo.queue(concurrency_count=1, max_size=8)
|
41 |
+
demo.launch()
|