Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, numpy as np, torch, gradio as gr, librosa
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
from model import DCCRN # 确保你上传了 model.py 和 utils 依赖
|
| 4 |
+
|
| 5 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 6 |
+
SR = 16000 # 你的模型训练采样率
|
| 7 |
+
|
| 8 |
+
# 从环境变量里读取模型仓库名和权重文件名
|
| 9 |
+
REPO_ID = os.getenv("MODEL_REPO_ID", "Ada312/DCCRN") # 你的模型仓库
|
| 10 |
+
FILENAME = os.getenv("MODEL_FILENAME", "dccrn.ckpt") # 权重文件
|
| 11 |
+
TOKEN = os.getenv("HF_TOKEN") # 如果模型仓库是私有,就需要这个
|
| 12 |
+
|
| 13 |
+
# 下载权重到本地缓存
|
| 14 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME, token=TOKEN)
|
| 15 |
+
|
| 16 |
+
# 初始化模型并加载权重
|
| 17 |
+
net = DCCRN()
|
| 18 |
+
ckpt = torch.load(ckpt_path, map_location=DEVICE)
|
| 19 |
+
state = ckpt.get("state_dict", ckpt)
|
| 20 |
+
state = {k.replace("model.","").replace("module.",""): v for k,v in state.items()}
|
| 21 |
+
net.load_state_dict(state, strict=False)
|
| 22 |
+
net.to(DEVICE).eval()
|
| 23 |
+
|
| 24 |
+
# 推理函数:输入 noisy audio → 输出 enhanced audio
|
| 25 |
+
def enhance(audio_path: str):
|
| 26 |
+
wav, _ = librosa.load(audio_path, sr=SR, mono=True)
|
| 27 |
+
x = torch.from_numpy(wav).float().to(DEVICE)[None, None, :]
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
y = net(x).squeeze().cpu().numpy()
|
| 30 |
+
return (SR, y)
|
| 31 |
+
|
| 32 |
+
# Gradio 界面
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("## 🎧 DCCRN Speech Enhancement\n上传或录音,点击“去噪”。")
|
| 35 |
+
with gr.Row():
|
| 36 |
+
inp = gr.Audio(sources=["upload","microphone"], type="filepath", label="Noisy speech")
|
| 37 |
+
out = gr.Audio(label="Enhanced speech")
|
| 38 |
+
gr.Button("去噪").click(enhance, inputs=inp, outputs=out)
|
| 39 |
+
|
| 40 |
+
demo.queue(concurrency_count=1, max_size=8)
|
| 41 |
+
demo.launch()
|