Spaces:
Runtime error
Runtime error
| import subprocess as sp | |
| sp.check_call("setup.sh", shell=True) | |
| import html | |
| import os | |
| from argparse import ArgumentParser | |
| from io import BytesIO | |
| from pathlib import Path | |
| import gradio as gr | |
| import librosa | |
| import spaces | |
| import torch | |
| from loguru import logger | |
| from torchaudio import functional as AF | |
| from transformers import AutoTokenizer | |
| from tools.llama.generate import generate_long | |
| from tools.llama.generate import load_model as load_llama_model | |
| from tools.vqgan.inference import load_model as load_vqgan_model | |
| # Make einx happy | |
| os.environ["EINX_FILTER_TRACEBACK"] = "false" | |
| HEADER_MD = """# Fish Speech | |
| A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio). | |
| 由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成. | |
| You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1). | |
| 你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1) 找到模型. | |
| Related code are released under BSD-3-Clause License, and weights are released under CC BY-NC-SA 4.0 License. | |
| 相关代码使用 BSD-3-Clause 许可证发布,权重使用 CC BY-NC-SA 4.0 许可证发布. | |
| We are not responsible for any misuse of the model, please consider your local laws and regulations before using it. | |
| 我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规. | |
| """ | |
| TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本.""" | |
| def build_html_error_message(error): | |
| return f""" | |
| <div style="color: red; font-weight: bold;"> | |
| {html.escape(error)} | |
| </div> | |
| """ | |
| def inference( | |
| text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_k, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| speaker=None, | |
| ): | |
| if len(reference_text) > 100: | |
| return None, "Ref text is too long, please keep it under 100 characters." | |
| if args.max_gradio_length > 0 and len(text) > args.max_gradio_length: | |
| return None, "Text is too long, please keep it under 1000 characters." | |
| # Parse reference audio aka prompt | |
| if enable_reference_audio and reference_audio is not None: | |
| # reference_audio_sr, reference_audio_content = reference_audio | |
| reference_audio_content, _ = librosa.load( | |
| reference_audio, sr=vqgan_model.sampling_rate, mono=True | |
| ) | |
| audios = torch.from_numpy(reference_audio_content).to(vqgan_model.device)[ | |
| None, None, : | |
| ] | |
| logger.info( | |
| f"Loaded audio with {audios.shape[2] / vqgan_model.sampling_rate:.2f} seconds" | |
| ) | |
| # VQ Encoder | |
| audio_lengths = torch.tensor( | |
| [audios.shape[2]], device=vqgan_model.device, dtype=torch.long | |
| ) | |
| prompt_tokens = vqgan_model.encode(audios, audio_lengths)[0][0] | |
| # LLAMA Inference | |
| result = generate_long( | |
| model=llama_model, | |
| tokenizer=llama_tokenizer, | |
| device=vqgan_model.device, | |
| decode_one_token=decode_one_token, | |
| max_new_tokens=max_new_tokens, | |
| text=text, | |
| top_k=int(top_k) if top_k > 0 else None, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| temperature=temperature, | |
| compile=args.compile, | |
| iterative_prompt=chunk_length > 0, | |
| chunk_length=chunk_length, | |
| max_length=args.max_length, | |
| speaker=speaker if speaker else None, | |
| prompt_tokens=prompt_tokens if enable_reference_audio else None, | |
| prompt_text=reference_text if enable_reference_audio else None, | |
| ) | |
| codes = next(result) | |
| # VQGAN Inference | |
| feature_lengths = torch.tensor([codes.shape[1]], device=vqgan_model.device) | |
| fake_audios = vqgan_model.decode( | |
| indices=codes[None], feature_lengths=feature_lengths, return_audios=True | |
| )[0, 0] | |
| fake_audios = fake_audios.float().cpu().numpy() | |
| return (vqgan_model.sampling_rate, fake_audios), None | |
| def build_app(): | |
| with gr.Blocks(theme=gr.themes.Base()) as app: | |
| gr.Markdown(HEADER_MD) | |
| # Use light theme by default | |
| app.load( | |
| None, | |
| None, | |
| js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', 'light');window.location.search = params.toString();}}", | |
| ) | |
| # Inference | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| text = gr.Textbox( | |
| label="Input Text / 输入文本", | |
| placeholder=TEXTBOX_PLACEHOLDER, | |
| lines=15, | |
| ) | |
| with gr.Row(): | |
| with gr.Tab(label="Advanced Config / 高级参数"): | |
| chunk_length = gr.Slider( | |
| label="Iterative Prompt Length, 0 means off / 迭代提示长度,0 表示关闭", | |
| minimum=0, | |
| maximum=100, | |
| value=30, | |
| step=8, | |
| ) | |
| max_new_tokens = gr.Slider( | |
| label="Maximum tokens per batch, 0 means no limit / 每批最大令牌数,0 表示无限制", | |
| minimum=128, | |
| maximum=512, | |
| value=512, # 0 means no limit | |
| step=8, | |
| ) | |
| top_k = gr.Slider( | |
| label="Top-K", minimum=0, maximum=5, value=0, step=1 | |
| ) | |
| top_p = gr.Slider( | |
| label="Top-P", minimum=0, maximum=1, value=0.7, step=0.01 | |
| ) | |
| repetition_penalty = gr.Slider( | |
| label="Repetition Penalty", | |
| minimum=0, | |
| maximum=2, | |
| value=1.5, | |
| step=0.01, | |
| ) | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| minimum=0, | |
| maximum=2, | |
| value=0.7, | |
| step=0.01, | |
| ) | |
| # speaker = gr.Textbox( | |
| # label="Speaker / 说话人", | |
| # placeholder="Type name of the speaker / 输入说话人的名称", | |
| # lines=1, | |
| # ) | |
| with gr.Tab(label="Reference Audio / 参考音频"): | |
| gr.Markdown( | |
| "5 to 10 seconds of reference audio, useful for specifying speaker. \n5 到 10 秒的参考音频,适用于指定音色。" | |
| ) | |
| enable_reference_audio = gr.Checkbox( | |
| label="Enable Reference Audio / 启用参考音频", | |
| ) | |
| reference_audio = gr.Audio( | |
| label="Reference Audio / 参考音频", | |
| value="docs/assets/audios/0_input.wav", | |
| type="filepath", | |
| ) | |
| reference_text = gr.Textbox( | |
| label="Reference Text / 参考文本", | |
| placeholder="参考文本", | |
| lines=1, | |
| value="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。", | |
| ) | |
| with gr.Column(scale=3): | |
| with gr.Row(): | |
| error = gr.HTML(label="Error Message / 错误信息") | |
| with gr.Row(): | |
| audio = gr.Audio(label="Generated Audio / 音频", type="numpy") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| generate = gr.Button( | |
| value="\U0001F3A7 Generate / 合成", variant="primary" | |
| ) | |
| # # Submit | |
| generate.click( | |
| inference, | |
| [ | |
| text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_k, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| # speaker, | |
| ], | |
| [audio, error], | |
| ) | |
| return app | |
| def parse_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument( | |
| "--llama-checkpoint-path", | |
| type=Path, | |
| default="checkpoints/text2semantic-medium-v1-2k.pth", | |
| ) | |
| parser.add_argument( | |
| "--llama-config-name", type=str, default="dual_ar_2_codebook_medium" | |
| ) | |
| parser.add_argument( | |
| "--vqgan-checkpoint-path", | |
| type=Path, | |
| default="checkpoints/vq-gan-group-fsq-2x1024.pth", | |
| ) | |
| parser.add_argument("--vqgan-config-name", type=str, default="vqgan_pretrain") | |
| parser.add_argument("--tokenizer", type=str, default="fishaudio/fish-speech-1") | |
| parser.add_argument("--device", type=str, default="cuda") | |
| parser.add_argument("--half", action="store_true") | |
| parser.add_argument("--max-length", type=int, default=2048) | |
| parser.add_argument("--compile", action="store_true") | |
| parser.add_argument("--max-gradio-length", type=int, default=1024) | |
| return parser.parse_args() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| args.precision = torch.half if args.half else torch.bfloat16 | |
| logger.info("Loading Llama model...") | |
| llama_model, decode_one_token = load_llama_model( | |
| config_name=args.llama_config_name, | |
| checkpoint_path=args.llama_checkpoint_path, | |
| device=args.device, | |
| precision=args.precision, | |
| max_length=args.max_length, | |
| compile=args.compile, | |
| ) | |
| llama_tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) | |
| logger.info("Llama model loaded, loading VQ-GAN model...") | |
| vqgan_model = load_vqgan_model( | |
| config_name=args.vqgan_config_name, | |
| checkpoint_path=args.vqgan_checkpoint_path, | |
| device=args.device, | |
| ) | |
| logger.info("VQ-GAN model loaded, warming up...") | |
| # Dry run to check if the model is loaded correctly and avoid the first-time latency | |
| inference( | |
| text="Hello, world!", | |
| enable_reference_audio=False, | |
| reference_audio=None, | |
| reference_text="", | |
| max_new_tokens=0, | |
| chunk_length=0, | |
| top_k=0, # 0 means no limit | |
| top_p=0.7, | |
| repetition_penalty=1.5, | |
| temperature=0.7, | |
| speaker=None, | |
| ) | |
| logger.info("Warming up done, launching the web UI...") | |
| app = build_app() | |
| app.launch(show_api=False) | |